Infrared and Laser Engineering, Volume. 52, Issue 12, 20230351(2023)

The construction method of space-based digital imaging link mathematical model

Yaru Li1,2, Liang Zhou1、*, Zhaohui Liu1, and Wenji She1
Author Affiliations
  • 1Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(20)
    Technical diagram of the space-based digital imaging system for planar targets
    Illustration of coordinate position relationships
    Diagram illustrating line-of-sight position relationships
    Partitioning of geometric surface mesh based on different distance functions. (a) Square; (b) Sphere; (c) Circular ring; (d) Cube
    Schematic diagram of light source importance sampling for radiative transfer path
    Illustration of the number of bounding boxes for different layer depths. (a) Layer depth 1; (b) Layer depth 2; (c) Layer depth 4; (d) Layer depth 6
    Modulation transfer function and mathematical representation of noise in imaging process
    (a), (b) Represent the position error values between the calculated results of the camera and target for 24 hours and 15 days, respectively, using the mathematical model, and the simulated results from STK
    Results of target visibility time periods within 15 days. (a) Visibility model calculation result; (b) STK simulation result
    Imaging results at different distances within the visible time period
    Imaging results under different poses and lighting directions
    (a) Three-dimensional schematic of the high-frequency vibration transfer function MTF for the imaging platform; (b) Spectrum plot within the cutoff frequency
    The influence of different amplitudes of high-frequency vibrations on MTF
    (a) Target radiance image; (b) Image with added high-frequency platform vibrations; (c) Image with added photon noise; (d) Image with the combined effects of high-frequency vibrations and photon noise
    • Table 1. Average orbital elements of the Sun

      View table
      View in Article

      Table 1. Average orbital elements of the Sun

      ParameterMethod of calculation
      T is the Julian century number calculated from January 1, 2000, 12:00.
      Semimajor axis/kma= 149597870
      Eccentricitye= 0.01670862 − 0.0004204T0.00000124T2
      Inclination/(°)i = 23°26'21''.448 − 46''.8150− 0''.00059T2 + 0''.001813T3
      RAAN/(°)$\varOmega = 0$
      Argument of perigee/(°)ω= 282°56'14''.45 + 6190''.32T + 1''.655T2 + 0''.012T3
      Mean anomaly/(°)M= 357°31'44''.76 + 129596581''.04T 0''.562T2− 0''.012T3
    • Table 2. Methods for solving the visible area

      View table
      View in Article

      Table 2. Methods for solving the visible area

      AreaSolution method
      GEarth$\begin{gathered} \left\{ {\left. { { {\boldsymbol{r} }_c},{R_E},{ {\boldsymbol{r} }_o},{h_0},{ {\boldsymbol{r} }_{co} } } \right|\beta > {\beta _0} {\text{or}} (\beta < {\beta _0}\; {\rm{and} } \; \alpha < {\alpha _0})} \right\} \\ = \left\{ \begin{gathered} \left. { { {\boldsymbol{r} }_c},{R_E},{ {\boldsymbol{r} }_o},{h_0},{ {\boldsymbol{r} }_{co} } } \right| \arccos \left( {\frac{ { - { {\boldsymbol{r} }_c} \cdot { {\boldsymbol{r} }_{co} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right| \cdot \left| { { {\boldsymbol{r} }_{co} } } \right|} } } \right) > \arccos \frac{ {\sqrt { { {\left| { { {\boldsymbol{r} }_c} } \right|}^2} - { {({h_0} + {R_E})}^2} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right|} }or \\ \left( {\left( {\arccos \left( {\frac{ { - { {\boldsymbol{r} }_c} \cdot { {\boldsymbol{r} }_{co} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right| \cdot \left| { { {\boldsymbol{r} }_{co} } } \right|} } } \right) < \arccos \frac{ {\sqrt { { {\left| { { {\boldsymbol{r} }_c} } \right|}^2} - { {({h_0} + {R_E})}^2} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right|} } } \right)\;{\rm{and} }\; \left( {\arccos \left( {\frac{ { { {\boldsymbol{r} }_o} \cdot { {\boldsymbol{r} }_c} } }{ {\left| { { {\boldsymbol{r} }_o} } \right| \cdot \left| { { {\boldsymbol{r} }_c} } \right|} } } \right) < \arccos \frac{ {\sqrt { { {\left| { { {\boldsymbol{r} }_c} } \right|}^2} - { {({h_0} + {R_E})}^2} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right|} } } \right)} \right) \\ \end{gathered} \right\} \\ \end{gathered}$$ \begin{gathered} {{\boldsymbol{r}}_c},{{\boldsymbol{r}}_o}{\text{ and }}{{\boldsymbol{r}}_s}{\text{ are the distances from the camera, target, and sun to the center of the earth, respectively;}}\;{R_E}{\text{ is the Earth radius}};{h_0}{\text{ is the height of the critical line of sight}} \\ {\text{ from the ground; }}{{\boldsymbol{r}}_{co}}{\text{ is the distance from the target to the camera;}}\;\beta {\text{ is the angle between - }}{{\boldsymbol{r}}_c}{\text{ and }}{{\boldsymbol{r}}_{co}};\;{\beta _0}{\text{ is the angle between thecritical axis of view and - }}{{\boldsymbol{r}}_c}; \\ \alpha {\text{ is the angle between }}{{\boldsymbol{r}}_c}{\text{ and }}{{\boldsymbol{r}}_o};\;{\alpha _0}{\text{ is the angle between the perpendicular of the critical axis of view and the center of the earth and }}{{\boldsymbol{r}}_c}. \\ \end{gathered} $
      GEclipse$\left\{ { { {\boldsymbol{r} }_o},{ {\boldsymbol{r} }_s}|\gamma \leqslant \pi /2{\text{or } }\left| { { {\boldsymbol{r} }_o} } \right|\sin \gamma > {R_E} } \right\} = \left\{ { { {\boldsymbol{r} }_o},{ {\boldsymbol{r} }_s}|\dfrac{ { { {\boldsymbol{r} }_o} \cdot { {\boldsymbol{r} }_s} } }{ {\left| { { {\boldsymbol{r} }_o} } \right| \cdot \left| { { {\boldsymbol{r} }_s} } \right|} } \geqslant 0{\text{ or } }\left| { { {\boldsymbol{r} }_o} } \right|\sin (\arccos (\dfrac{ { { {\boldsymbol{r} }_o} \cdot { {\boldsymbol{r} }_s} } }{ {\left| { { {\boldsymbol{r} }_o} } \right| \cdot \left| { { {\boldsymbol{r} }_s} } \right|} })) \geqslant {R_E} } \right\}{\text{ } }\gamma {\text{ is the angle between } }{ {\boldsymbol{r} }_o}{\text{ and } }{ {\boldsymbol{r} }_s}.$
      Gsun$\left\{ { { {\boldsymbol{r} }_{co} },{ {\boldsymbol{r} }_{cs} }|\varUpsilon > {\varUpsilon _0} } \right\} = \left\{ { { {\boldsymbol{r} }_{co} },{ {\boldsymbol{r} }_{cs} }|\dfrac{ { { {\boldsymbol{r} }_{co} } \cdot { {\boldsymbol{r} }_{cs} } } }{ {\left| { { {\boldsymbol{r} }_{co} } } \right| \cdot \left| { { {\boldsymbol{r} }_{cs} } } \right|} } < \cos {\varUpsilon _0} } \right\}$${{\boldsymbol{r}}_{cs}}{\text{ is the distance from the sun to the camera;}}{\Upsilon _0}{\text{ is the critical angle of the solar apparent circular plane}}.$
      Gp${\text{Determined by factors such as the field of view angle,detection distance, and signal-to-noise ratio of the detector} }{\text{.} }$
    • Table 3. Fitted parameter values for satellite surface material BRDF

      View table
      View in Article

      Table 3. Fitted parameter values for satellite surface material BRDF

      Materialarbrkbkdkr
      Silicon solar panel0.557−261.615.420.0470.717
      Polyimide0.458−51.9028.380.0771.865
    • Table 4. Parameters for lens and detector imaging simulation

      View table
      View in Article

      Table 4. Parameters for lens and detector imaging simulation

      ItemValueItemValue
      Focal length4.5 mNumber of pixels1024×1024
      Simulation band450-850 nmPixel size6.5 μm× 6.5 μm
      Camera aperture0.36 mQuantum efficiency55%
      Lens transmission efficiency $ \geqslant 0.7$Full well charge30 K
      Quantization bits11Readout noise2e-
      Number of pixel samples 50Dark current noise35 e-/s
    • Table 5. On orbit camera and target orbit parameters

      View table
      View in Article

      Table 5. On orbit camera and target orbit parameters

      Orbital$a$/km $e$$i$
      Camera6868.85460.006691797.4154
      Satellite6796.71420.000609651.6417
      Orbital$\omega $${\varOmega }$M
      Camera140.0776200.0074183.0867
      Satellite117.620140.29437.3764
    • Table 6. Calculation and reference table for the position of the Sun at 00:00 on January 1st to June 1st, 2022

      View table
      View in Article

      Table 6. Calculation and reference table for the position of the Sun at 00:00 on January 1st to June 1st, 2022

      DateCalculation results
      Solar apparent right ascension/ h m s Solar apparent declination/ (°)(′)(″)
      Jan. 1st18 45 52−23 01 03
      Feb. 1st20 58 15−17 09 46
      Mar. 1st22 47 34−07 40 21
      Apr. 1st00 41 2404 27 11
      May 1st02 32 4915 00 32
      Jun. 1st04 35 3922 01 18
      DateAstronomical calendar query results
      Solar geocentric right ascension/ h m s Solar geocentric declination/ (°)(′)(″)
      Jan. 1st18 45 48−23 01 13
      Feb. 1st20 58 12−17 10 07
      Mar. 1st22 47 31−07 40 25
      Apr. 1st00 41 2104 26 54
      May 1st02 32 4715 00 24
      Jun. 1st04 35 3822 01 20
    Tools

    Get Citation

    Copy Citation Text

    Yaru Li, Liang Zhou, Zhaohui Liu, Wenji She. The construction method of space-based digital imaging link mathematical model[J]. Infrared and Laser Engineering, 2023, 52(12): 20230351

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 8, 2023

    Accepted: --

    Published Online: Feb. 23, 2024

    The Author Email: Zhou Liang (zhouliang@opt.ac.cn)

    DOI:10.3788/IRLA20230351

    Topics