Journal of Inorganic Materials, Volume. 35, Issue 4, 491(2020)
[1] LEI Y, WANG G, SONG S et al. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[D]. CrystEngComm, 11, 1857-1862(2009).
[2] YE L Q, DENG K J, XU F et al. Increasing visible-light absorption for photocatalysis with black BiOCl[D]. Physical Chemistry Chemical Physics, 14, 82-85(2012).
[3] ZHANG X, AI Z, JIA F et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[D]. Journal of Physical Chemistyr C, 112, 747-753(2008).
[4] HENLE J, SIMON P, FRENZEL A et al. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions[D]. Chemistry of Materials, 19, 366-373(2007).
[5] ZHANG K L, LIU C M, HUANG F Q et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[D]. Applied Catalysis B-Environmental, 68, 125-129(2006).
[6] CHAI S Y, KIM Y J, JUNG M H et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[D]. Journal of Catalysis, 262, 144-149(2009).
[7] LI T B, CHEN G, ZHOU C et al. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances[D]. Dalton Transactions, 40, 6751-6758(2011).
[8] LI H T, HE X D, LIU Y et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[D]. Carbon, 49, 605-609(2011).
[9] TANG L B, JI R B, CAO X K et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots[D]. ACS Nano, 6, 5102-5110(2012).
[10] RAY S C, SAHA A, JANA N R et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application[D]. Journal of Physical Chemistry C, 113, 18546-18551(2009).
[11] ZONG J, ZHU Y H, YANG X L et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors[D]. Chemical Communications, 47, 764-766(2011).
[12] SHEN J H, ZHU Y H, YANG X L et al. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[D]. New Journal of Chemistry, 36, 97-101(2012).
[13] LI Y, HU Y, ZHAO Y et al. An electrochemical avenue green- luminescent graphene quantum dots potential electron-acceptors photovoltaics[D]. Advanced Materials, 23, 776-780(2011).
[14] SHI W, LI X H, MA H M. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells[D]. Angewandte Chemie International Edition, 51, 6432-6435(2012).
[15] BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights[D]. Angewandte Chemie International Edition, 49, 6726-6744(2010).
[16] ZHANG H C, MING H, LIAN S Y et al. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light[D]. Dalton Transactions, 40, 10822-10825(2011).
[17] LI H T, LIU R H, LIU Y et al. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior[D]. Journal of Materials Chemistry, 22, 17470-17475(2012).
[18] YU H, ZHANG H C, HUANG H et al. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature[D]. New Journal of Chemistry, 36, 1031-1035(2012).
[19] ZHANG H, HUANG H, MING H et al. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light[D]. Journal of Materials Chemistry, 22, 10501-10506(2012).
[20] LIU J Y, LIU N Y, HAN Y Z et al. Metal-free efficient photocatalyst for stable visible water splitting
[21] YU H J, SHI R, ZHAO Y F et al. Smart utilization of carbon dots in semiconductor photocatalysis[D]. Advanced Materials, 28, 9454-9477(2016).
[22] KE J, LI X Y, ZHAO Q D et al. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance[D]. Journal of Colloid and Interface Science, 496, 425-433(2017).
[23] HU Y D, XIE X F, WANG X et al. Visible-light upconversion carbon quantum dots decorated TiO2 for the photodegradation of flowing gaseous acetaldehyde[D]. Applied Surface Science, 440, 266-274(2018).
[24] DI J, XIA J X, JI M X et al. Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight[D]. ACS Applied Materials & Interfaces, 7, 20111-20123(2015).
[25] GUO C X, ZHAO D, ZHAO Q et al. Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination[D]. Chemical Communications, 50, 7318-7321(2014).
[26] LI H, HE X, KANG Z et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[D]. Angewandte Chemie International Edition, 49, 4430-4434(2010).
[27] ZHANG X, HUANG H, LIU J et al. Carbon quantum dots serving as spectral converters through broadband upconversion of near- infrared photons for photoelectrochemical hydrogen generation[D]. Journal of Materials Chemistry A, 1, 11529-11533(2013).
[28] ZHANG Z J, ZHENG T T, XU J Y et al. Carbon quantum dots/Bi2WO6 composites for efficient photocatalytic pollutant degradation and hydrogen evolution[D]. Nano, 12, 1750082(2017).
[29] KIM H G, BORSE P H, CHOI W Y et al. Photocatalytic nanodiodes for visible light photocatalysis[D]. Angewandte Chemie International Edition, 44, 4585-4589(2005).
[30] ZHU Y Y, LIU Y F, LV Y H et al. Enhancement of photocatalytic activity for BiPO4
[31] YUE D, CHEN D M, WANG Z H et al. Enhancement of visible photocatalytic performances of a Bi2MoO6-BiOCl nanocomposite with plate-on-plate heterojunction structure[D]. Physical Chemistry Chemical Physics, 16, 26314-26321(2014).
Get Citation
Copy Citation Text
Zhijie ZHANG, Hairui HUANG, Kun CHENG, Shaoke GUO.
Category: RESEARCH LETTERS
Received: May. 9, 2019
Accepted: --
Published Online: Mar. 1, 2021
The Author Email: