Semiconductor Optoelectronics, Volume. 45, Issue 5, 707(2024)
Broadband Anti-Reflection Structure for Terahertz Detectors
[1] [1] Nagatsuma T. Terahertz technologies: Present and future[J]. IEICE Electron. Express, 2011, 8(14): 1127-1142.
[2] [2] El-Shenawee M, Vohra N, Bowman T, et al. Cancer detection in excised breast tumors using terahertz imaging and spectroscopy[J]. Biomed. Spectrosc. Imaging, 2019, 8(1/2): 1-9.
[3] [3] Federici J, Schulkin B, Huang F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs[J]. Semicond. Sci. Technol., 2005, 20(7): S266-S280.
[4] [4] Hwu R J, Baker C, Woolard D L, et al. People screening using terahertz technology (Invited Paper)[J]. Proc. of SPIE, 2005, 5790: 1-10.
[5] [5] Wang C-X, Wang J, Hu S, et al. Key Technologies in 6G terahertz wireless communication systems a survey[J]. IEEE Veh. Technol. Mag., 2021, 16(4): 27-37.
[8] [8] Stillman W, Shur M. Closing the gap: Plasma wave electronic terahertz detectors[J]. J. Nanoelectron. Optoelectron., 2007, 2(3): 209-221.
[9] [9] Grischkowsky D, Keiding S, van Exter M, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. J. Opt. Society of America B, 1990, 7(10): 2006-2015.
[11] [11] Sun J, Zhang Z, Li X, et al. Two-terminal terahertz detectors based on AlGaN/GaN high-electron-mobility transistors[J]. Appl. Phys. Lett., 2019, 115(11): 111101.
[12] [12] Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al. Short-range ultra-broadband terahertz communications concepts and perspectives[J]. IEEE Antennas Propag. Mag., 2007, 49(6): 24-39.
[13] [13] Damyanov D, Batra A, Friederich B, et al. High-resolution long-range THz imaging for tunable continuous-wave systems[J]. IEEE Access, 2020(8): 151997-152007.
[15] [15] Kohlhaas R B, Breuer S, Mutschall S, et al. Ultrabroadband terahertz time-domain spectroscopy using Ⅲ-Ⅴ photoconductive membranes on silicon[J]. Opt. Express, 2022, 30(13): 23896-23908.
[16] [16] Guo S, Yang L, Dai B, et al. Past achievements and future challenges in the development of infrared antireflective and protective coatings[J]. Phys. Status Solidi A, 2020, 217(16): 2000149.
[17] [17] Bushunov A A, Tarabrin M K, Lazarev V A. Review of surface modification technologies for mid-infrared antireflection microstructures fabrication[J]. Laser Photonics Rev., 2021, 15(5): 2000202.
[18] [18] Christoph R, Englert M B, Hansjorg M. Antireflection coated, wedged, single-crystal silicon aircraft window for the far infrared[J]. IEEE Trans. Geosci. Remote Sens., 1999, 37(4): 1997-2003.
[19] [19] Shevchik-Shekera A V, Sizov F F, Golenkov O G, et al. Silicon lenses with HDPE anti-reflection coatings for low THz frequency range[J]. Semicond. Phys. Quantum Electron. Optoelectron., 2023, 26(1): 59-67.
[20] [20] Li Y, Cai B, Zhu Y. Fabrication of anti-reflective micro-structure at terahertz frequency by using Chinese acupuncture needles[J]. Opt. Lett., 2015, 40(12): 2917-2920.
[21] [21] Gatesman A J, Waldman J, Ji M, et al. An anti-reflection coating for silicon optics at terahertz frequencies[J]. IEEE Microwave and Guided Wave Lett., 2000, 10(7): 264-266.
[25] [25] Tian Z F, Xu P, Yu Y, et al. Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures[J]. Chin. Phys. B, 2019, 28(5): 058501.
Get Citation
Copy Citation Text
SUN Shufei, JIN Lin, SUN Jiandong, QIN Hua. Broadband Anti-Reflection Structure for Terahertz Detectors[J]. Semiconductor Optoelectronics, 2024, 45(5): 707
Category:
Received: Mar. 27, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: