Laser & Optoelectronics Progress, Volume. 58, Issue 7, 0714003(2021)

Thermal Fatigue Properties of Laser Cladding Fe-Based Coating

Hongyu Li1,2、**, Lianfeng Wei1, Zeming Wang1, Hui Chen2、*, Na Zheng1, Ran Zhang1, and Wei Wang1
Author Affiliations
  • 1Nuclear Power Institute of China, Chengdu , Sichuan 610213, China
  • 2School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu , Sichuan 610031, China
  • show less
    Figures & Tables(24)
    Microstructures of Lc-Sr-31 powder
    Schematic of coaxial powder feeding laser cladding process
    Photo of thermal fatigue testing machine
    Shape and size of thermal fatigue specimen
    Crack propagation pattern on the surface of cladding layer and sampling diagram. (a)Crack propagation pattern; (b) sampling diagram
    Thermal fatigue crack length test. (a) Schematic of sample crack length test; (b) software statistics of crack length
    Thermal fatigue crack propagation of matrix material
    Crack morphologies in thermal fatigue process of matrix material. (a) 400 thermal cycles; (b) 500 thermal cycles; (c) 900 thermal cycles; (d) 1000 thermal cycles; (e) 1500 thermal cycles ; (f) 2000 thermal cycles
    Microstructure changes of matrix material after 2000 thermal cycles. (a) Original microstructure; (b) (c) microstructure and its partially enlarged view after 2000 thermal cycles
    Relationship between the number of thermal cycles and crack length for matrix and cladding samples
    Oxidation corrosion pit on the interface. (a) 80 thermal cycles; (b) 120 thermal cycles; (c) 160 thermal cycles
    Transverse crack at the interface. (a) 500 thermal cycles; (b) 1000 thermal cycles
    Crack passivation. (a) 1500 thermal cycles;(b) 2000 thermal cycles
    Effect of preheating temperature on thermal fatigue property of cladding layer
    Microstructures of cladding layer before heat treatment.(a) M7C3 hard phase at grain boundary; (b) M23C6 type intragranular carbide
    Position of energy spectrum analysis points of cladding layer before heat treatment
    Microstructures of cladding layer after heat treatment. (a) Zone 1; (b) zone 2
    Position of energy spectrum analysis points of cladding layer after heat treatment
    Macro morphologies of heat-treated cladding samples during 2000 thermal cycles. (a)(b) 500 thermal cycles; (c)(d) 1000 thermal cycles; (e)(f) 1500 thermal cycles; (g)(h) 2000 thermal cycles
    Morphologies of notch at the tip of heat-treated cladding sample after 2000 thermal cycles. (a) Whole view; (b) enlarged A zone; (c) enlarged B zone; (d) enlarged C zone
    Microstructures of heat-treated cladding sample before and after 2000 thermal cycles. (a) Before thermal cycles; (b) after 2000 thermal cycles
    • Table 1. Chemical composition of matrix material and iron-based powder

      View table

      Table 1. Chemical composition of matrix material and iron-based powder

      MaterialMass fraction /%
      CSiMnCrNiMoPSFe
      Base0.340.260.670.970.020.160.0110.004Bal.
      Lc-Sr-310.180.920.1116.81.831.950.0060.015Bal.
    • Table 2. Mass fraction of elements in cladding layer before heat treatment

      View table

      Table 2. Mass fraction of elements in cladding layer before heat treatment

      ZoneMass fraction of main elements /%
      SiMoCrMnFe
      Spot 10.382.7723.450.7268.37
      Spot 20.920.8613.830.5181.33
    • Table 3. Mass fraction of elements in cladding layer after heat treatment

      View table

      Table 3. Mass fraction of elements in cladding layer after heat treatment

      ZoneMass fraction of main elements /%
      SiMoCrMnFe
      Spot 10.571.5322.720.9270.45
      Spot 20.681.1615.190.4280.03
    Tools

    Get Citation

    Copy Citation Text

    Hongyu Li, Lianfeng Wei, Zeming Wang, Hui Chen, Na Zheng, Ran Zhang, Wei Wang. Thermal Fatigue Properties of Laser Cladding Fe-Based Coating[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0714003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jul. 10, 2020

    Accepted: Sep. 3, 2020

    Published Online: Apr. 25, 2021

    The Author Email: Li Hongyu (Lhy0111@outlook.com), Chen Hui (xnrpt@163.com)

    DOI:10.3788/LOP202158.0714003

    Topics