Laser Journal, Volume. 45, Issue 7, 49(2024)
Optical hydrogen sensing technology based on surface plasmon
[1] [1] Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866.
[2] [2] Buttner W J, Post M B, Burgess R, et al. An overview of hydrogen safety sensors and requirements[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2462-2470.
[3] [3] X. Bevenot A T, C. Veillas, H. Gagnaire, et al. Hydrogen leak detection using an optical fibre sensor for aerospace applications[J]. Sensors and Actuators B, 2000, 67(1-2): 57-67.
[4] [4] Chen K, Yuan D, Zhao Y. Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges[J]. Optics & Laser Technology, 2021, 137: 106808.
[5] [5] Zhang Y-N, Peng H, Qian X, et al. Recent advancements in optical fiber hydrogen sensors[J]. Sensors and Actuators B: Chemical, 2017, 244: 393-416.
[6] [6] Szilgyi p , Westerwaal R J, Van De Krol R, et al. Metal-organic framework thin films for protective coating of Pdbased optical hydrogen sensors[J]. Journal of Materials Chemistry C, 2013, 1(48): 8146-8155.
[7] [7] Chi X, Wang X, Ke X, et al. Fabrication of a Hydrogen Sensing Optical Fiber Using Atomic Layer Deposition[J]. IEEE Photonics Technology Letters, 2022, 34(13): 687-690.
[8] [8] Kalanur S S, Lee Y-A, Seo H. Eye-readable gasochromic and optical hydrogen gas sensor based on CuS-Pd[J]. RSC Advances, 2015, 5(12): 9028-9034.
[9] [9] Cai S, Gonzalez-Vila A, Zhang X, et al. Palladium-coated plasmonic optical fiber gratings for hydrogen detection[J]. Optics Letters, 2019, 44(18): 4483-4486.
[10] [10] Tang S, Zhang B, Li Z, et al. Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration[J]. Opt Express, 2015, 23(17): 22826-22835.
[11] [11] Sirbuly D J, LTant S E, Ratto T V. Hydrogen Sensing with Subwavelength Optical Waveguides via Porous Silsesquioxane-Palladium Nanocomposites[J]. Advanced Materials, 2008, 20(24): 4724-4727.
[12] [12] Zoric I, Larsson E M, Kasemo B, et al. Localized surface plasmons shed light on nanoscale metal hydrides[J]. Advanced Materials, 2010, 22(41): 4628-4633.
[13] [13] Butler M A. Micromirror optical-fiber hydrogen sensor[J]. Sensors and Actuators B, 1994, 22: 155-163.
[14] [14] B′Evenot X, Trouillet A, Veillas C, et al. Surface plasmon resonance hydrogen sensor using an optical fibre[J]. Measurement Science and Technology, 2002, 13: 118-124.
[15] [15] Hosoki A, Nishiyama M, Igawa H, et al. A surface plasmon resonance hydrogen sensor using Au/Ta2O5/Pd multilayers on hetero-core optical fiber structures[J]. Sensors and Actuators B: Chemical, 2013, 185: 53-58.
[16] [16] Hosoki A, Nishiyama M, Sakurai N, et al. Long-Term Hydrogen Detection Using a Hetero-Core Optical Fiber Structure Featuring Au/Ta2O5/Pd/Pt Multilayer Films[J]. IEEE Sensors Journal, 2020, 20(1): 227-233.
[17] [17] Sterl F, Strohfeldt N, Both S, et al. Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors[J]. ACS Sensors, 2020, 5(4): 917-927.
[18] [18] Perrotton C, Javahiraly N, Slaman M, et al. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing[J]. Opt Express, 2011, 7(S6): A1175-A1183.
[19] [19] Mcpeak K M, Jayanti S V, Kress S J P, et al. Plasmonic Films Can Easily Be Better: Rules and Recipes[J]. ACS Photonics, 2015, 2(3): 326-333.
[20] [20] Sharma A K, Gupta B D. On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers[J]. Optics Communications, 2005, 245(1-6): 159-169.
[21] [21] Pawar D, Kale S N. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions[J]. Mikrochim Acta, 2019, 186(4): 253.
[22] [22] Gupta B D, Kant R. Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures[J]. Optics & Laser Technology, 2018, 101: 144-161.
[23] [23] West P R, Ishii S, Naik G V, et al. Searching for better plasmonic materials[J]. Laser & Photonics Reviews, 2010, 4(6): 795-808.
[24] [24] Kravets V G, Jalil R, Kim Y J, et al. Graphene-protected copper and silver plasmonics[J]. Scientific Reports, 2014, 4(1): 5517.
[25] [25] Nam Y T, Kang H, Chong S, et al. Rapid and Reversible Sensing Performance of Hydrogen-Substituted Graphdiyne[J]. ACS Sensors, 2023, 8(3): 1151-1160.
[26] [26] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3883-3897.
[27] [27] Wood R W. Xlii. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902, 4(21): 396-402.
[28] [28] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift fr Physik A Hadrons and nuclei, 1968, 216(4): 398-410.
[29] [29] Kretschmann E, Raether H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light[J]. Zeitschrift fr Naturforschung A, 1968, 23(12): 2135-2136.
[30] [30] Bhatia P, Yadav P, Gupta B D. Surface plasmon resonance based fiber optic hydrogen peroxide sensor using polymer embedded nanoparticles[J]. Sensors and Actuators B: Chemical, 2013, 182: 330-335.
[31] [31] Li C, Xiao L, Yang X, et al. Ag/APTES/CuxO (x = 1, 2)-MGS-Coated No-Core Fiber Surface Plasmon Resonance Gas Sensor and Its Application in Hydrogen Sulfide Detection[J]. IEEE Sensors Journal, 2022, 22(3): 2182-2189.
[32] [32] Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance for gas detection and biosensor[J]. Sensors and Actuators, 1983, 4: 299-304.
[33] [33] Chadwick B, Gal M. Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium[J]. Applied Surface Science, 1993, 68: 135-138.
[34] [34] Morjan M, Zchner H, Cammann K. Contributions to a reliable hydrogen sensor based on surface plasmon surface resonance spectroscopy[J]. Surface Science, 2009, 603(10-12): 1353-1359.
[35] [35] Herkert E, Sterl F, Strohfeldt N, et al. Low-Cost Hydrogen Sensor in the ppm Range with Purely Optical Readout[J]. ACS Sensors, 2020, 5(4): 978-983.
[36] [36] Tobiska P, Hugon O, Trouillet A, et al. An integrated optic hydrogen sensor based on SPR on palladium[J]. Sensors and Actuators B, 2001, 74: 168-172.
[37] [37] Liu H, Wang M, Wang Q, et al. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes[J]. Optical Fiber Technology, 2018, 45: 1-7.
[38] [38] Yan H, Zhao X, Zhang C, et al. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face[J]. Optics Communications, 2016, 359: 157-161.
[39] [39] Miliutina E, Guselnikova O, Chufistova S, et al. Fast and All-Optical Hydrogen Sensor Based on Gold-Coated Optical Fiber Functionalized with Metal-Organic Framework Layer[J]. ACS Sensors, 2019, 4(12): 3133-3140.
[40] [40] Yang Z, Albrow-Owen T, CAI W, et al. Miniaturization of optical spectrometers[J]. Science, 2021, 371(6528): 1811-1820.
[41] [41] Wadell C, Syrenova S, Langhammer C. Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides[J]. ACS Nano, 2014, 8(12): 11925-11940.
[42] [42] Langhammer C, Zori I, Kasemo B, et al. Hydrogen Storage in Pd Nanodisks Characterized with a Novel Nanoplasmonic Sensing Scheme[J]. Nano Letters, 2007, 7(10): 3122-3127.
[43] [43] Liu N, Tang M L, Hentschel M, et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus[J]. Nature Materials, 2011, 10(8): 631-636.
[44] [44] Sil D, Gilroy K D, Niaux A, et al. Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor[J]. ACS Nano, 2014, 8(8): 7755-7762.
[45] [45] Mikami M, Komatsu D, Hosoki A, et al. Quick response hydrogen LSPR sensor based on a hetero-core fiber structure with palladium nanoparticles[J]. Opt Express, 2021, 29(1): 48-58.
[46] [46] Nasir M E, Dickson W, Wurtz G A, et al. Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials[J]. Advanced Materials, 2014, 26(21): 3532-3537.
[47] [47] Kim H-M, Kim H-J, Yang S-C, et al. Fiber optic localized surface plasmon resonance hydrogen sensor based on gold nanoparticles capped with palladium[J]. Journal of Industrial and Engineering Chemistry, 2022, 111: 281-288.
[48] [48] Aray A, Ranjbar M, Shokoufi N, et al. Plasmonic fiber optic hydrogen sensor using oxygen defects in nanostructured molybdenum trioxide film[J]. Optics Letters, 2019, 44(19): 4773-4776.
[49] [49] Wang Q, Jing J Y, Wang B T. Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(9): 3350-3357.
[50] [50] Song H, Wang Q, Zhao W-M. A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber[J]. Optics and Lasers in Engineering, 2020, 132: 106135.
[51] [51] Wu L, Guo J, Wang Q, et al. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor[J]. Sensors and Actuators B: Chemical, 2017, 249: 542-548.
[52] [52] Rithesh Raj D, Prasanth S, Vineeshkumar T V, et al. Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles[J]. Sensors and Actuators B: Chemical, 2016, 224: 600-606.
[53] [53] Kant R, Tabassum R, Gupta. B D. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection[J]. Nanotechnology, 2017, 28(195502): 1056-1062.
[54] [54] Kant R, Tabassum R, Gupta B D. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor[J]. Biosensors and Bioelectronics, 2018, 99: 637-645.
[55] [55] Shegai T, Chen S, Miljkovi c' V D, et al. A bimetallic nanoantenna for directional colour routing[J]. Nature Communications, 2011, 2(1): 481.
[56] [56] Yan X, Xie J, Yang Z, et al. High sensitivity hydrogen sensor based on optical micro/nanofiber couplers working at the dispersion turning point[J]. Journal of Lightwave Technology, 2022: 1-1.
[57] [57] Nikfarjam A, Salehifar N. Improvement in gas-sensing properties of TiO2 nanofiber sensor by UV irradiation[J]. Sensors and Actuators B: Chemical, 2015, 211: 146-156.
[58] [58] Nguyen H, Sidiroglou F, Collins S F, et al. A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures[J]. Applied Physics Letters, 2013, 103(19): 193116.
[59] [59] Wang X, Tang Y, Zhou C, et al. Theoretical investigation of a dual-channel optical fibre surface plasmon resonance hydrogen sensor based on wavelength modulation[J]. Measurement Science and Technology, 2013, 24(6): 065102.
[60] [60] Downes F, Taylor C M. Theoretical investigation of a multi-channel optical fiber surface plasmon resonance hydrogen sensor[J]. Optics Communications, 2021, 490: 126916.
Get Citation
Copy Citation Text
ZHENG Longchao, LIU Yong. Optical hydrogen sensing technology based on surface plasmon[J]. Laser Journal, 2024, 45(7): 49
Category:
Received: Dec. 21, 2023
Accepted: Dec. 20, 2024
Published Online: Dec. 20, 2024
The Author Email: Yong LIU (liuyongdx@shiep.edu.cn)