Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0925001(2023)

Multiple Fano Resonances and Optical Sensing Based on C3-Symmetry-Breaking

Jingzhao Zhang1, Xiaoqing Luo1、*, Xiaofeng Xu1, Youlin Luo1, Weihua Zhu1, Zhiyong Chen1, and Xinlin Wang1,2、**
Author Affiliations
  • 1Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, Hunan, China
  • 2School of Mechanical Engineering, University of South China, Hengyang 421001, Hunan, China
  • show less
    References(35)

    [1] Zhang X P, Ma X M, Dou F et al. A biosensor based on metallic photonic crystals for the detection of specific bioreactions[J]. Advanced Functional Materials, 21, 4219-4227(2011).

    [2] Kravets V G, Kabashin A V, Barnes W L et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 118, 5912-5951(2018).

    [3] Liu L L, Li Z, Xu B Z et al. Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons[J]. Plasmonics, 12, 439-444(2017).

    [4] Gan C H, Gbur G. Spatial coherence conversion with surface plasmons using a three-slit interferometer[J]. Plasmonics, 3, 111-117(2008).

    [5] Arbabi A, Arbabi E, Horie Y et al. Planar metasurface retroreflector[J]. Nature Photonics, 11, 415-420(2017).

    [6] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).

    [7] Shao L D, Zhu W R. Tri-band metasurface for multi-mode vector beam conversion[C](2020).

    [8] Guo J Y, Li W Y, Sun R et al. Generation of broadband terahertz vortex beam based on double-arrow metasurface[J]. Chinese Journal of Lasers, 48, 2014003(2021).

    [9] Mollaei M S M, Simovski C. Dual-metasurface superlens: a comprehensive study[J]. Physical Review B, 100, 205426(2019).

    [10] Butet J, Martin O J F. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures[J]. Optics Express, 22, 29693-29707(2014).

    [11] Lim W X, Singh R. Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime[J]. Nano Convergence, 5, 5(2018).

    [12] Campione S, Guclu C, Ragan R et al. Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles[J]. ACS Photonics, 1, 254-260(2014).

    [13] Mork J, Chen Y, Heuck M. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation[J]. Physical Review Letters, 113, 163901(2014).

    [14] Yu Y, Xue W Q, Semenova E et al. Demonstration of a self-pulsing photonic crystal Fano laser[J]. Nature Photonics, 11, 81-84(2017).

    [15] Heuck M, Kristensen P T, Elesin Y et al. Improved switching using Fano resonances in photonic crystal structures[J]. Optics Letters, 38, 2466-2468(2013).

    [16] Yu Y, Heuck M, Hu H et al. Fano resonance control in a photonic crystal structure and its application to ultrafast switching[J]. Applied Physics Letters, 105, 061117(2014).

    [17] Nozaki K, Shinya A, Matsuo S et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities[J]. Optics Express, 21, 11877-11888(2013).

    [18] Shuai Y C, Zhao D Y, Singh Chadha A et al. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement[J]. Applied Physics Letters, 103, 241106(2013).

    [19] Shuai Y C, Zhao D Y, Tian Z B et al. Double-layer Fano resonance photonic crystal filters[J]. Optics Express, 21, 24582-24589(2013).

    [20] Hu J H, Liu X H, Zhao J J et al. Investigation of Fano resonance in compound resonant waveguide gratings for optical sensing[J]. Chinese Optics Letters, 15, 030502(2017).

    [21] Chen Z, Cao X Y, Song X K et al. Side-coupled cavity-induced Fano resonance and its application in nanosensor[J]. Plasmonics, 11, 307-313(2016).

    [22] Ma J, Li J P, Wu X S et al. Sensing characteristics based on Fano resonance of photonic crystal slot nanobeam cavity[J]. Acta Optica Sinica, 41, 2413002(2021).

    [23] Ghodsi F, Dashti H, Ahmadi-Shokouh J. Design of a multilayer nano-antenna as a hyperbolic metamaterial with Fano response for optical sensing[J]. Optical and Quantum Electronics, 52, 316(2020).

    [24] Guo X D, Hu H, Zhu X et al. Higher order Fano graphene metamaterials for nanoscale optical sensing[J]. Nanoscale, 9, 14998-15004(2017).

    [25] Shen Z, Du M Y. High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings[J]. Optics Express, 29, 28287-28296(2021).

    [26] Farmani A, Mir A, Bazgir M et al. Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study[J]. Physica E: Low-Dimensional Systems and Nanostructures, 104, 233-240(2018).

    [27] Ou J, Luo X Q, Luo Y L et al. Near-infrared dual-wavelength plasmonic switching and digital metasurface unveiled by plasmonic Fano resonance[J]. Nanophotonics, 10, 947-957(2020).

    [28] Zhang S P, Bao K, Halas N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011).

    [29] Yi J J, Luo X Q, Ou J et al. Near- and mid-infrared plasmonic Fano resonances induced by different geometric configurations in subwavelength nanostructures[J]. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114345(2020).

    [30] Li S L, Wang Y L, Jiao R Z et al. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system[J]. Optics Express, 25, 3525-3533(2017).

    [31] Xu X F, Luo X Q, Zhang J Z et al. Near-infrared plasmonic sensing and digital metasurface via double Fano resonances[J]. Optics Express, 30, 5879-5895(2022).

    [32] Petschulat J, Cialla D, Janunts N et al. Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering[J]. Optics Express, 18, 4184-4197(2010).

    [33] Wang Y J, Sun C W, Li H Y et al. Self-reference plasmonic sensors based on double Fano resonances[J]. Nanoscale, 9, 11085-11092(2017).

    [34] Luo Y L, Luo X Q, Yi J J et al. Whispering-gallery mode resonance-assisted plasmonic sensing and switching in subwavelength nanostructures[J]. Journal of Materials Science, 56, 4716-4726(2021).

    [35] Chen W, Hu H T, Jiang W et al. Ultrasensitive nanosensors based on localized surface plasmon resonances: from theory to applications[J]. Chinese Physics B, 27, 107403(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jingzhao Zhang, Xiaoqing Luo, Xiaofeng Xu, Youlin Luo, Weihua Zhu, Zhiyong Chen, Xinlin Wang. Multiple Fano Resonances and Optical Sensing Based on C3-Symmetry-Breaking[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0925001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OPTOELECTRONICS

    Received: Jan. 14, 2022

    Accepted: Feb. 21, 2022

    Published Online: May. 9, 2023

    The Author Email: Luo Xiaoqing (xqluophys@gmail.com), Wang Xinlin (wxl_ly000@aliyun.com)

    DOI:10.3788/LOP220540

    Topics