Laser & Optoelectronics Progress, Volume. 60, Issue 21, 2100007(2023)

An Overview of Photonic Neuromorphic Computing Techniques Based on Phase-Change Materials

Jinrong Wang, Bing Song, Hui Xu, Hengyu Zhang, Zhenyuan Sun, and Qingjiang Li*
Author Affiliations
  • College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    References(57)

    [1] Silver D, Schrittwieser J, Simonyan K et al. Mastering the game of go without human knowledge[J]. Nature, 550, 354-359(2017).

    [2] Abraham I. The case for rejecting the memristor as a fundamental circuit element[J]. Scientific Reports, 8, 10972(2018).

    [3] Kavehei O, Iqbal A, Kim Y S et al. The fourth element: characteristics, modelling and electromagnetic theory of the memristor[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466, 2175-2202(2010).

    [4] Yao P, Wu H Q, Gao B et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 577, 641-646(2020).

    [5] Gao B, Zhou Y, Zhang Q T et al. Memristor-based analogue computing for brain-inspired sound localization with in situ training[J]. Nature Communications, 13, 2026(2022).

    [6] Liu Z W, Tang J S, Gao B et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces[J]. Nature Communications, 11, 4234(2020).

    [7] Peng X Y, Yang J Q, Wu C H et al. Improvement of dynamic range of laser positioning system based on back propagation neural network[J]. Acta Optica Sinica, 41, 0620001(2021).

    [8] Chang J L, Sitzmann V, Dun X et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification[J]. Scientific Reports, 8, 12324(2018).

    [9] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [10] Bueno J, Maktoobi S, Froehly L et al. Reinforcement learning in a large-scale photonic recurrent neural network[J]. Optica, 5, 756-760(2018).

    [11] Li Y J, Chen R Y, Sensale-Rodriguez B et al. Real-time multi-task diffractive deep neural networks via hardware-software co-design[J]. Scientific Reports, 11, 11013(2021).

    [12] Lee S Y, Kim Y H, Cho S M et al. Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material[J]. Scientific Reports, 7, 41152(2017).

    [13] Goi E, Chen X, Zhang Q M et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip[J]. Light: Science & Applications, 10, 40(2021).

    [14] Hejda M, Robertson J, Bueno J et al. Neuromorphic encoding of image pixel data into rate-coded optical spike trains with a photonic VCSEL-neuron[J]. APL Photonics, 6, 060802(2021).

    [15] Kulce O, Mengu D, Rivenson Y et al. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces[J]. Light: Science & Applications, 10, 196(2021).

    [16] Fu T Z, Zang Y B, Huang H H et al. On-chip photonic diffractive optical neural network based on a spatial domain electromagnetic propagation model[J]. Optics Express, 29, 31924-31940(2021).

    [17] Kulce O, Mengu D, Rivenson Y et al. All-optical information-processing capacity of diffractive surfaces[J]. Light: Science & Applications, 10, 25(2021).

    [18] Zuo Y, Zhao Y J, Chen Y C et al. Scalability of all-optical neural networks based on spatial light modulators[J]. Physical Review Applied, 15, 054034(2021).

    [19] Zhou T K, Lin X, Wu J M et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit[J]. Nature Photonics, 15, 367-373(2021).

    [20] Rahman M S S, Li J X, Mengu D et al. Ensemble learning of diffractive optical networks[J]. Light: Science & Applications, 10, 14(2021).

    [21] Zhai Z S, Huang Y S, Li Q Y et al. Diffraction characteristics of orthogonal phase grating based on spatial light modulator[J]. Acta Optica Sinica, 42, 1605002(2022).

    [22] Xu S F, Wang J, Wang R et al. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays[J]. Optics Express, 27, 19778-19787(2019).

    [23] Hamerly R, Bernstein L, Sludds A et al. Large-scale optical neural networks based on photoelectric multiplication[J]. Physical Review X, 9, 021032(2019).

    [24] Xu S F, Wang J, Zou W W. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines[J]. Optics Letters, 45, 3689-3692(2020).

    [25] Tait A N, de Lima T F, Zhou E et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific Reports, 7, 7430(2017).

    [26] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).

    [27] Li X, Youngblood N, Ríos C et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell[J]. Optica, 6, 1-6(2019).

    [28] Ríos C, Youngblood N, Cheng Z G et al. In-memory computing on a photonic platform[J]. Science Advances, 5, eaau5759(2019).

    [29] Zhang Q H, Zhang Y F, Li J Y et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit[J]. Optics Letters, 43, 94-97(2017).

    [30] Delaney M, Zeimpekis I, Lawson D et al. A new family of ultralow loss reversible phase‐change materials for photonic integrated circuits: Sb2S3 and Sb2Se3[J]. Advanced Functional Materials, 30, 2002447(2020).

    [31] Zheng J J, Khanolkar A, Xu P P et al. Non-volatile all-optical quasi-continuous switching in GST-on-silicon microring resonators[C], SF3A.6(2018).

    [32] Zhang H Y, Zhou L J, Xu J et al. Silicon microring resonators tuned with GST phase change material[C](2018).

    [33] Hu H, Zhang H Y, Zhou L J et al. Non-volatile optical memory based on a slot nanobeam resonator filled with GST material[C](2018).

    [34] Zhao P, Guo P X, Liu Z Y et al. Photonic digital-to-analog converter based on microring resonator and photonic-nonvolatile-memory[C], W2D.3(2021).

    [35] Xu P P, Zheng J J, Doylend J et al. Non-volatile integrated-silicon-photonic switches using phase-change materials[C](2019).

    [36] Rios C, Hosseini P, Wright C D et al. On-chip photonic memory elements employing phase-change materials[J]. Advanced Materials, 26, 1372-1377(2014).

    [37] Chen Z, Li T C, Sun D G et al. Digital thermo-optic switch of SOI waveguide based on Goos-Hanchen spatial shift of reflected mode[J]. Acta Photonica Sinica, 50, 0423001(2021).

    [38] Pernice W H P, Bhaskaran H. Photonic non-volatile memories using phase change materials[J]. Applied Physics Letters, 101, 171101(2012).

    [39] Zheng J J, Khanolkar A, Xu P P et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform[J]. Optical Materials Express, 8, 1551-1561(2018).

    [40] Wu C M, Yu H S, Li H et al. Low-loss integrated photonic switch using sub-wavelength patterned phase change material[J]. ACS Photonics, 6, 87-92(2018).

    [41] Zhang C P, Zhang M, Xie Y W et al. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring[J]. Photonics Research, 8, 1171-1176(2020).

    [42] Wu D, Yang X, Zhang H Y et al. Resonant-enhanced optical switch based on non-volatile phase change material GST[C], T3E.5(2021).

    [43] Ríos C, Stegmaier M, Hosseini P et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 9, 725-732(2015).

    [44] Cheng Z G, Ríos C, Pernice W H P et al. On-chip photonic synapse[J]. Science Advances, 3, e1700160(2017).

    [45] Xu P P, Zheng J J, Doylend J K et al. Low-loss and broadband nonvolatile phase-change directional coupler switches[J]. ACS Photonics, 6, 553-557(2019).

    [46] Li X, Youngblood N, Cheng Z G et al. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing[J]. Optica, 7, 218-225(2020).

    [47] Farmakidis N, Youngblood N, Li X et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality[J]. Science Advances, 5, eaaw2687(2019).

    [48] Zhang H Y, Zhou L J, Lu L J et al. Miniature multilevel optical memristive switch using phase change material[J]. ACS Photonics, 6, 2205-2212(2019).

    [49] Zheng J J, Fang Z R, Wu C M et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater[J]. Advanced Materials, 32, 2001218(2020).

    [50] Yang X, Nisar M S, Yuan W et al. Phase change material enabled 2 × 2 silicon nonvolatile optical switch[J]. Optics Letters, 46, 4224-4227(2021).

    [51] Delaney M, Zeimpekis I, Du H et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material[J]. Science Advances, 7, eabg3500(2021).

    [52] Xu Z, Luo H, Zhu H et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 21, 5269-5276(2021).

    [53] Tait A N, Nahmias M A, Shastri B J et al. Broadcast and weight: an integrated network for scalable photonic spike processing[J]. Journal of Lightwave Technology, 32, 3427-3439(2014).

    [54] Xu X Y, Tan M X, Corcoran B et al. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks[J]. Laser & Photonics Reviews, 14, 2000070(2020).

    [55] Robertson J, Wade E W, Kopp Y et al. Toward neuromorphic photonic networks of ultrafast spiking laser neurons[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7700715(2020).

    [56] Feldmann J, Youngblood N, Wright C D et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019).

    [57] Feldmann J, Youngblood N, Karpov M et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jinrong Wang, Bing Song, Hui Xu, Hengyu Zhang, Zhenyuan Sun, Qingjiang Li. An Overview of Photonic Neuromorphic Computing Techniques Based on Phase-Change Materials[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2100007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 19, 2022

    Accepted: Oct. 24, 2022

    Published Online: Oct. 26, 2023

    The Author Email: Li Qingjiang (qingjiangli@nudt.edu.cn)

    DOI:10.3788/LOP222566

    Topics