Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 3081(2022)

Research Progress on Precursor Continuous Silicon Carbide Fiber and Its Oxidation Behaviors

WANG Yongshou*... WANG Xiaozhou and WANG Yingde |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(74)

    [6] [6] KATOA Y, SNEAD L, HENAGAR C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. J Nuclear Mater, 2014, 455(1/3): 387-397.

    [7] [7] MURTHY P L, NEMETH N, BREWER D N. et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[J]. Compos Part B-English, 2008, 39(4): 694-703.

    [8] [8] VERRILLI M J, MARTIN L C, BREWER D N. RQL Sector rig testing of SiC/SiC combustor liners[R]. NASA/TM-2002-211509, 2002: 78-91.

    [9] [9] ELAM S, EFFMGER M, HOLMES R, et al. Lightweight chambers for thrust cell applications[C]// 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Alabama, 2000: 1-10.

    [11] [11] YAJIMA S, HAYASHI J, OMORI M. Continuous SiC fiber of high tensile strength[J]. Chem Lett, 1975, 4(9): 931-934.

    [12] [12] YAJIMA S, HAYASHI J, OKAMURA K. Pyrolysis of a poly-borodiphenyl-siloxane[J]. Nature, 1977, 266(5602): 521-522.

    [13] [13] YAJIMA S, OKAMURA K, MATSUZAWA T, et al. Anomalous characteristics of the microcrystalline state of SiC fibers[J]. Nature, 1979, 279(5715): 706-707.

    [14] [14] TAKEDA M, URANO A, SAKAMOTO J I. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S[J]. J Nuclear Mater, 1998, (258/263): 1594-1599.

    [15] [15] BUNSELL A R, PLANTA. A review of the development of three generations of small diameter silicon carbide fibers[J]. J Mater Sci, 2006, 41(3): 823-839.

    [16] [16] CLAUSS B, SCHAWALLER D. Modern aspects of ceramic fiber development[J]. Adv Sci Technol, 2006, 50(1): 1-8.

    [20] [20] WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. J Mater Sci Technol, 2019(35): 2743-2750.

    [21] [21] ISHIKAWA T. Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J]. Compos Sci Technol, 1994, 51(2): 135-144.

    [22] [22] ICHIKAWA H. Polymer-derived ceramic fibers[J]. Ann Rev Mater Res, 2016(46): 335-56.

    [23] [23] SHIMOO T, OKAMURA K, TSUKASA I, et al. Thermal stability of low-oxygen SiC fibers fired under different conditions[J]. J Mater Sci, 1999, 34(22): 5623-5631.

    [24] [24] SUGIMOTO M, SHIMOO T, OKAMURA. K, et al. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: I, Evolved gas analysis[J]. J Am Ceram Soc, 1995, 78(8): 1013-1017.

    [25] [25] TAKI T, OKAMURA K, SATO M, et al. A study on the electron irradiation curing mechanism of polycarbosilane fibers by solid-state 29Si high-resolution nuclear magnetic resonance spectroscopy[J]. J Mater Sci, 1988, 7(3): 209-211.

    [26] [26] MAO X H, SONG Y C, LI W, et al. Mechanism of curing process for polycarbonsilane fiber with cyclohexene vapor[J]. J Appl Polym Sci, 2007, 105(3): 1651-1657.

    [27] [27] XUE J G, WANG Y D, SONG Y C. Preparation of low oxygen SiC fiber by dry spinning[J]. J Inorg Mater, 2007, 22(4): 681-684.

    [28] [28] TAKEDA M, IMAI Y, ICHIKAWA H, et al. Thermal stability of SiC fiber prepared by an irradiation-curing process[J]. Compos Sci Technol, 1999, 59(6): 793-799.

    [30] [30] GUO C, SHEN Y. Effects of free carbon on microstructure of CVD SiC fiber[J]. Acta Metall Sin, 2007, 43(2): 165-170.

    [32] [32] TAKEDA M, SASKIA A, SAKAMOTO J, et al. Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers[J]. J Am Ceram Soc, 2000, 83(5): 1063-1069.

    [33] [33] LOOWIT Z J, RABE J A, Zang Vila, et al. Structure and properties of Sylramic silicon carbide fiber-a polycrystalline, stoichiometric β-SiC composition[M]. John Wiley Sons, Inc, US, 2008: 132

    [34] [34] DICARLO J A, YUN H M. Methods for producing silicon carbide architectural preforms[P], US Patent, 7687016. 2010-03-30.

    [35] [35] CHU Z Y, FENG C X, SONG Y C, et al. Tensile strength evaluation of a polymer- derived multifilament continuous SiC fiber[C]// Mechanics and Material Engineering for Science and Experiments. Key Lab. of Ceramic Fibers & Composites, National University of Defense Technology, China, 2001: 76.

    [36] [36] YUAN M, ZHOU T, HE J, et al. Formation of boron nitride coatings on silicon carbide fibers using trimethyl borate vapor[J]. Appl Surf Sci, 2016, 382(30): 27-33.

    [37] [37] XU X F, XIAO P, XIONG X, et al. Effects of Ni catalyzer on growth velocity and mor- phology of SiC nano-fibers[J]. J China Nonferrous Met Soc, 2009, 19(5): 1146-1150.

    [47] [47] SHA J J, HIROKI T, KOYAMA A, et al. Thermal and mechanical stabilities of Hi- Nicalon SiC fiber under annealing and creep in various oxygen partial pressures[J]. Corros Sci, 2008(50): 3132-3138.

    [48] [48] SHIMOO T, OKAMURA K, MORINAGA Y. Active-to-passive oxidation transition for polycarbosilane-derived silicon carbide fibers heated in Ar-O2 gas mixtures[J]. J Mater Sci, 2002, 37(9): 1793-1800.

    [49] [49] MATHIEU Q, BISEMOUS G, FRANCIS R. et al. Oxidation of β-SiC at high temperature in Ar/O2, Ar/CO2, Ar/H2O gas mixtures: Active/ passive transition[J]. J Eur Ceram Soc, 2018, 38(13): 4320-4328.

    [50] [50] SHIMOO T, TAKEUCHI H, OKAMURA K. Thermal stability of polycarbosilane- derived silicon carbide fibers under reduced pressures[J]. J Am Ceram Soc, 2001, 3(84): 566-570.

    [51] [51] HENLE A. Formation and structure of reaction layers in SiC/glass and SiC/SiC composites[J]. Compos Part A: Appl Sci Manuf, 1996, 27(9): 685-690.

    [52] [52] HAY R S. SiC fiber strength after low pO2 oxidation[J]. J Am Ceram Soc, 2018, 101(2): 831-844.

    [53] [53] CHARPENTIER L, BALAT-P M, ADALBERT F. High temperature oxidation of SiC under helium with low-pressure oxygen Part1: sintered-SiC[J]. J Eur Ceram Soc, 2010, 30(12): 2653-2660.

    [56] [56] ROY J, CHANDRA S, DAS S. Oxidation behaviors of silicon carbide a review[J]. Rev Adv Mater Sci, 2014, 38(3): 29-39.

    [57] [57] WANG J, ZHANG L, ZENG Q, et al. The rate-limiting step in the thermal oxidation of silicon carbide[J]. Scripta Mater, 2010, 62(9): 654-657.

    [58] [58] NATHAN, S, JACOBSON. Corrosion of silicon-based ceramics in combustion environments[J]. J Am Ceram Soc, 1993, 76(1): 3-28.

    [59] [59] LIU C, XI J Q, IZABELA S. Sensitivity of SiC grain boundaries to oxidation[J]. J Appl Phys Chem C, 2019, 123(18): 11546-11554.

    [60] [60] DEAL B E, GROVE A, SNOW E H, et al. Observation of impurity redistribution during thermal oxidation of silicon using the MOS structure[J]. J Electrochem Soc, 1965, 112(3): 308.

    [61] [61] HIMMEL L, MEHUL R F, BIRCHEN C E. Self-diffusion of iron in iron oxides and the wagner theory of oxidation[J]. J Materiomics, 1953, 5(6): 827-843.

    [62] [62] OPILA E J. Oxidation kinetics of chemically vapor-deposited silicon carbide in wet oxygen[J]. J Am Ceram Soc, 1994, 77(3): 730-736.

    [63] [63] NARASIMHA T, GOTO T, IGUCHI Y, et al. High-temperature oxidation of chemically vapor deposited silicon carbide in wet oxygen at 1 823 to 1 923K[J]. J Am Ceram Soc, 1990, 73(12): 3580-3584.

    [64] [64] OPILA E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure[J]. J Am Ceram Soc, 1999, 82(3): 625-636.

    [65] [65] RAMBERG C E, WORRELL W L. Oxygen transport in silica at high temperature: Implications of oxidation kinetics[J]. J Am Ceram Soc, 2001, 84(11): 2607-2616.

    [66] [66] FILIPPOS L, NASRANI R. In Proceedings of 7th CIMTEC, Satellite Symposium 2(S2.1-L03)[C]// Montecatini, Terme-Italy, June 1990: 35-51.

    [67] [67] SHIMOO T, HAYATOU T, TAKEDA M, et al. Mechanism of oxidation of low-oxygen SiC fiber prepared by electron radiation curing method[J]. J Ceram Soc Jpn, 1994, 102(1187): 617-622.

    [68] [68] CHALON G, PAILLARD R, NASRANI R, et al. Thermal stability of a PCS-derived SiC fiber with a low oxygen content (Hi-Nicalon)[J]. J Mater Sci, 1997, 32(2): 327-347

    [69] [69] SHIMOO T, TOYODA F, OKAMURA K. Effect of oxygen partial pressure on oxidation rate of Si-C-O fiber[J]. J Ceram Soc Jpn, 1998, 106(1233): 447.

    [70] [70] NASRANI R, GUETTA A, REBILLED F, et al. Oxidation mechanisms and kinetics of SiC- matrix composites and their constituents[J]. J Mater Sci, 2004, 39(24): 7303-7316.

    [71] [71] CHALON G, CSIERNIK M, PAILLARD R, et al. A model SiC-based fiber with a low oxygen content prepared from a polycarbosilane precursor[J]. J Mater Sci, 1997, 32(4): 893-911.

    [72] [72] WILSON M, OPILA E. A review of SiC fiber oxidation with a new study of Hi-Nicalon SiC fiber oxidation[J]. Adv Eng Mater, 2016, 10(18): 1698-1709.

    [73] [73] SHIMOO T, TOYODA F, OKAMURA K. Oxidation kinetics of low-oxygen silicon carbide fiber[J]. J Mater Sci, 2000, 35(13): 3301-3306.

    [74] [74] HAY R S, CHATER R J. Oxidation kinetics strength of Hi-NicalonTM-S SiC fiber after oxidation in dry and wet air[J]. J Am Ceram Soc, 2017, 100(9): 4110-4130.

    [75] [75] HAY R S, FAIR G E, BUFFEX R, et al. Hi-nicalonTM-S SiC fiber oxidation and scale crystallization kinetics[J]. J Am Ceram Soc, 2011, 11(94): 3983-3991.

    [76] [76] SHIMOO T, TAKEUCHI H, TAKEDA M, et al. Oxidation kinetics and mechanical property of stoichiometric SiC fibers (Hi-Nicalon-S)[J]. J Ceram Soc Jpn, 2010, 108(1264): 1096-1102.

    [77] [77] MCFARLAND B, OPILA E J. Silicon carbide fiber oxidation behavior in the presence of boron nitride[J]. J Am Ceram Soc, 2018, 101(12): 5534-5551.

    [78] [78] NARASIMHA T, GOTO T, HIRAI T. High- temperature passive oxidation of chemically vapor deposited silicon carbide[J]. J Am Ceram Soc, 1989, 72(8): 1386-1390.

    [79] [79] COSTELLO J A, TESSLER R E. Oxidation kinetics of silicon carbide crystals and ceramics: I, in dry oxygen[J]. J Am Ceram Soc, 1986, 69(9): 674-681.

    [80] [80] CHEN X H, SUN Z G, HAN X, et al. Evolution of microstructure and tensile strength of Cansas-II SiC fibers under air oxidizing atmosphere[J]. J Eur Ceram Soc, 2021, 41(15): 7585-7600

    [81] [81] HAY R S, FAIR G E, HART A, et al. Kinetics of passive oxidation of Hi-nicalon-S SiC fibers in wet air: Relationships between SiO2 scale thickness, crystallization, and fiber strength[M]. John Wiley & Sons, Ltd, 2012.

    [82] [82] TAKEDA M, URANUS A, SAKAMOTO J, et al. Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane[J]. J Am Ceram Soc, 2000, 5(83): 1171-1176.

    [83] [83] WEN Q, YU Z, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109: 10063.

    [84] [84] ISHIKAWA T, KOTUKU Y, KOMAGATA K, et al. High-strength alkali-resistant sintered SiC fiber stable to 2 200 ℃[J]. Nature, 1998, 391(6669): 773-775.

    [85] [85] GOU Y Z, JIAN K, et al. Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-temperature stability up to 1 900 ℃[J]. J Am Ceram Soc, 2018, 101(5): 15366.

    [86] [86] HUGER M, SOUTHARD S, GAULT C. Oxidation of Nicalon SiC fibers[J]. J Mater Sci Lett, 1993, 12(6): 414-16.

    [87] [87] HAY R S, MOGILEVSKY P. Model for SiC fiber strength after oxidation in dry and wet air[J]. J Am Ceram Soc, 2019, 102(1): 397-415.

    [88] [88] DEAL B E, GROVE A S. General relationship for the thermal of silicon[J]. J Appl Phys, 1965, 36(12): 3770-2911.

    [90] [90] YAO R Q, FENG Z D, CHEN L, et al. Oxidation behavior of Hi-Nicalon SiC monofilament fibres in air and O2-H2O-Ar atmospheres[J]. Corros Sci, 2012, 57(4): 182-191.

    [91] [91] MAZDAYASNA S. Fiber Reinforced Ceramic Composites: Materials, Processing, and Technology[M]. Noyes Publications, US, 1990.

    [92] [92] ZACHARY T, PETER K, NATHANIEL N, et al. Hi- NicalonTM-type S fiber tow surface desizing and decarburization via heat treatment[J]. Ceram Int, 2021, 47(23): 33709-33717.

    [97] [97] HAY R S, CORNS R. Passive oxidation kinetics for glass and cristobalite formation on Hi-Nicalon-S SiC fibers in steam[J]. J Am Ceram Soc, 2018, 101(11): 5241-5256.

    [98] [98] BOAKYE E E, MOGILEVSKY P, KEY T S, et al. In situ Y2Si2O7 coatings on Hi-Nicalon-S SiC fibers: Phase formation and fiber strength[J]. J Am Ceram Soc, 2019, 102(10): 5725-5737.

    [99] [99] LI Y, CHEN M N, ZHANG Q Z, et al. Microstructure and corrosion behavior of in-situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1 400 ℃[J]. J Eur Ceram Soc, 2022, 42(3): 3427-3436.

    [100] [100] AZARNOUSH S, RAJ R. Thin coatings of hafnon abate oxidative recession of SiC fibers[J]. J Am Ceram Soc, 2021, 104(3): 1210-1215.

    [101] [101] WU B, NI N, FAN X, et al. Scheelite coatings on SiC fiber: Effect of coating temperature and atmosphere[J]. Ceram Int, 2021, 47(2): 1693-1703.

    Tools

    Get Citation

    Copy Citation Text

    WANG Yongshou, WANG Xiaozhou, WANG Yingde. Research Progress on Precursor Continuous Silicon Carbide Fiber and Its Oxidation Behaviors[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 3081

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 6, 2022

    Accepted: --

    Published Online: Jan. 27, 2023

    The Author Email: Yongshou WANG (wangyongshou08@nudt.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220255

    Topics