Spectroscopy and Spectral Analysis, Volume. 42, Issue 5, 1385(2022)

Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network

Rong-chang JIANG1,*... Ming-sheng GU2,2;, Qing-he ZHAO1,1;, Xin-ran LI1,1;, Jing-xin SHEN1,1; 3; and Zhong-bin SU1,1; *; |Show fewer author(s)
Author Affiliations
  • 11. Institute of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
  • 22. Harbin City Data Center, Harbin 150030, China
  • show less
    Figures & Tables(14)
    Schematic diagram of hyperspectral imaging system
    Schematic representation of selection of ROI on Chinese cabbage sample
    Spectral data preprocessing by MSC(a): Without preprocessing; (b): With MSC preprocessing
    CNN structure
    CNN hyperparameter selection(a): TLA for different LR; (b): TLA for different BS; (c): OA for different Epochs
    Average spectra of chinese cabbage samples
    Low frequency portions of wavelet transform based on db1 function(a)—(f) corresponding to 1~6 layers of DWT, respectively
    Process of selecting characteristic wavelength by CARS
    Flow chart of hyperspectral image classification based on DWT and deep learning
    Modeling results based on DWT, PCA and CARS(a)—(d) Overall accuracies of CNN, MLP, KNN and SVM models based on DWT;(e) Overall accuracies of four models based on PCA; (f) OAs of four models based on CARS
    • Table 1. MLP network structure

      View table
      View in Article

      Table 1. MLP network structure

      神经元个数激活函数
      全连接层FC1512relu
      全连接层FC2256relu
      全连接层FC3256relu
      全连接层FC4128relu
      输出层5softmax
    • Table 2. Parameter settings of the CNN structure

      View table
      View in Article

      Table 2. Parameter settings of the CNN structure

      离散小波变换层数
      1~45~6
      卷积炽C13×3×163×3×16
      激活层A1relurelu
      舍弃层D10.30.3
      卷积层C25×5×323×3×32
      正则层L210.0010.001
      激活层A2relurelu
      舍弃层D20.50.5
      池化层MaxPooling2×2×22×2×2
      全连接层FC1256256
      全连接层FC2256256
      正则层L220.001〗〗0.001
      输出层55
      激活层A3softmaxsoftmax
    • Table 3. Overall accuracies and Kappa coefficients of different algorithms

      View table
      View in Article

      Table 3. Overall accuracies and Kappa coefficients of different algorithms

      模型降维算法
      NoneCARSPCADWT
      OA
      /%
      KappaTime
      /ms
      OA
      /%
      KappaTime
      /ms
      OA
      /%
      KappaTime
      /ms
      OA
      /%
      KappaTime
      /ms
      KNN12.00-0.1016.9811.20-0.1110.0056.000.494.0066.400.5820.02
      SVM89.600.8774.7726.400.084.9968.000.604.9990.400.8814.03
      MLP67.200.5980.7872.800.6659.9966.400.5867.0183.200.7963.23
      CNN82.400.78698.1326.400.084.9964.000.5594.0191.200.8986.01
    • Table 4. Overall accuracies of the various prediction algorithms

      View table
      View in Article

      Table 4. Overall accuracies of the various prediction algorithms

      降维
      算法
      模型药物种类
      毒死蜱氯氰菊酯灭多威乐果无残留
      NoneKNN16.0012.008.0024.000.00
      CARS16.0012.004.0020.004.00
      PCA58.8242.0063.7944.4469.56
      DWT60.0080.0048.0064.0080.00
      NoneSVM96.0092.0084.0084.0092.00
      CARS100.008.0020.004.000.00
      PCA68.6266.0070.6966.6667.39
      DWT96.00100.0080.0084.0092.00
      NoneMLP88.0088.0052.0012.0096.00
      CARS56.0052.0092.0072.0092.00
      PCA60.7868.0075.8646.6778.26
      DWT88.0084.0072.0076.0096.00
      NoneCNN76.0084.0076.0080.0096.00
      CARS76.0080.0076.0080.00100.00
      PCA60.7874.0063.7944.4476.08
      DWT88.0088.0084.0096.00100.00
    Tools

    Get Citation

    Copy Citation Text

    Rong-chang JIANG, Ming-sheng GU, Qing-he ZHAO, Xin-ran LI, Jing-xin SHEN, Zhong-bin SU. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1385

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 3, 2021

    Accepted: --

    Published Online: Nov. 10, 2022

    The Author Email: JIANG Rong-chang (jake_jrc@qq.com)

    DOI:10.3964/j.issn.1000-0593(2022)05-1385-08

    Topics