Acta Photonica Sinica, Volume. 50, Issue 12, 1222004(2021)

Design of Airborne Infrared Dual-band Imaging Optical System Based on Harmonic Diffraction and Free-form Surface

Jie LI, Hui LUO, Jincheng LI, and Hanping WU*
Author Affiliations
  • Institute of Optoelectronic System Technology, Wuhan Institute of Technology, Wuhan 430205, China
  • show less
    Figures & Tables(19)
    Design example of RC optical system
    Design example of Schmidt- Cassegrain optical system
    Design example of off-axis three-mirror optical system
    Mathematical model of structure control
    The structure of the optimized system
    The MTF of the optimized system
    Point diagram of the optimized system
    The in-circle energy of the optimized system
    Field curvature and distortion of the optimized system
    Seidel aberration diagram of the optimized system
    The MTF of the system at different temperatures in the 3~5 μm band
    The MTF of the system at different temperatures in the 8~12 μm band
    • Table 1. Main technical indicators of the system

      View table
      View in Article

      Table 1. Main technical indicators of the system

      Technical indexIndex requirements
      Focal length1 200±5 mm
      Effective caliber300±5 mm
      Working bandMedium wave/long wave
      Half field of view≥2°
      Root Mean Square (RMS) of the radius of the diffuse spot≤25 μm
      Modulation Transfer Function (MTF)Medium/long wave bands are both greater than 0.4(10 lp/mm)
      Operating temperature-60℃~+60℃
      Total length of the system≤750 mm
    • Table 2. Resonant wavelengths of different design wavelengths

      View table
      View in Article

      Table 2. Resonant wavelengths of different design wavelengths

      Design wavelength/μm81012
      p=2Resonance order234567234567234567
      Resonance wavelength/μm85.343.22.72.2106.7543.32.91286543.4
      p=3Resonance order234567234567234567
      Resonance wavelength/μm12864.843.415107.5654.2181297.265.1
    • Table 3. Performance of optional mirror substrate materials

      View table
      View in Article

      Table 3. Performance of optional mirror substrate materials

      MaterialDensity/(g·  cm-2Elastic modmodulus/GPaSpecific modulus of elasticity/(×109N·mm·g-1Thermal conductivity/(W·m-1·K-1Thermal expansion coefficien/(×1016·K-1Thermal deformation coefficient/×108m·W-1
      SiC3.0540012.61852.51.4
      Be1.8528015.116011.47.2
      Low-expansion glass-ceramic2.5923.71.460.053
      Low expansion fused silica2.2673.11.30.032.3
    • Table 4. Performance analysis of optional refractive/refractive diffractive lens materials

      View table
      View in Article

      Table 4. Performance analysis of optional refractive/refractive diffractive lens materials

      MaterialTransmission band/μmTheoretical transmittance/%Refractive index nElastic modulus/GPaThermal conductivity/(W·m-1·K-1Thermal expansion coefficient/(×1016·K-1Knoop hardness/(kg·mm-2Breaking strength/MPa
      Si1.1~953.93.426130.91

      596 (125 K)

      163 (313 K)

      105.1 (400 K)

      -0.5 (75 K)

      2.5 (293 K)

      4.6 (1400 K)

      1 15070~340
      Ge1.8~2347.14.003 2103

      165.8 (125K)

      59 (293 K)

      43.95 (400 K)

      2.4 (100 K)

      6.1 (298 K)

      8.0 (1 200 K)

      78090~100
      Standard ZnS1-13752.2074.517 (296 K)

      4.6 (173 K)

      6.6 (273 K)

      7.7 (473 K)

      230~25097.95
      Standard ZnSe0.5~20712.4070.318 (300 K)

      5.6 (173 K)

      7.1 (273 K)

      8.3 (293 K)

      10552.55
      GaAs0.9~1555.853.27682.6855 (300 K)

      0.9 (75 K)

      5.7 (300 K)

      7.3 (1 000 K)

      -130
      CaF20.13~12941.4375.798.418.715837
    • Table 5. Final tolerance distribution

      View table
      View in Article

      Table 5. Final tolerance distribution

      OperandSurface1Surface2ValueMinimumMaximum
      COMP16-50-5050
      TWAV4(10)
      TRAD3-1999.900-0.020.02
      TRAD6-666.652-0.020.02
      TRAD9-999.950-0.020.02
      TRAD112728.675-0.20.2
      TRAD122406.081-0.20.2
      TRAD131054.373-0.20.2
      TRAD14916.156-0.20.2
      TRAD151439.644-0.20.2
      TRAD161112.167-0.20.2
      TETX33-0.0180.018
      TETX66-0.0180.018
      TETX99-0.0180.018
      TTHI12600.000-0.20.2
      TTHI45-499.975-0.20.2
      TTHI78499.975-0.20.2
      TTHI1012-600.000-0.20.2
      TTHI1112-13.166-0.20.2
      TTHI1214-11.801-0.20.2
      TTHI1314-13.855-0.20.2
      TTHI1416-27.165-0.20.2
      TTHI1516-23.399-0.20.2
    • Table 6. Tolerance analysis results

      View table
      View in Article

      Table 6. Tolerance analysis results

      Test wavelength/μmNomimol/μmBest/μmThe surface for the best resultsWorst/μmThe surface of the worst results90%>/μm80%>/μm50%>/μm20%>/μm10%>/μm
      49.9329.9661128.9641924.03222.08915.79611.90711.544
      109.0769.839331.1871422.77019.86314.09511.40311.012
    • Table 7. Comparison of design results and corresponding technical indicators

      View table
      View in Article

      Table 7. Comparison of design results and corresponding technical indicators

      The main parametersTechnical indexDesign result
      System focal length/mm1 200±51 200
      Effective caliber/mm300±5300
      Half field of view/(°)≥±2±2
      Working band/μmMedium wave/long wave3~5 μm/8~12 μm
      MTF@10 lp/mm≥0.4

      ≥0.6(3~5 μm)

      ≥0.45(8~12 μm)

      Diffuse spot radius(RMS)/μm≤25

      18.335(3~5 μm)

      15.811(8~12 μm)

    Tools

    Get Citation

    Copy Citation Text

    Jie LI, Hui LUO, Jincheng LI, Hanping WU. Design of Airborne Infrared Dual-band Imaging Optical System Based on Harmonic Diffraction and Free-form Surface[J]. Acta Photonica Sinica, 2021, 50(12): 1222004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: May. 21, 2021

    Accepted: Sep. 22, 2021

    Published Online: Jan. 26, 2022

    The Author Email: WU Hanping (wuhanping601@sina.com)

    DOI:10.3788/gzxb20215012.1222004

    Topics