Chinese Journal of Quantum Electronics, Volume. 33, Issue 4, 456(2016)
First-order spatial coherence of ultracold Bose gas above phase transition temperature
[1] [1] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201.
[2] [2] Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms[J]. Phys. Rev. Lett., 1995, 75(22): 3969-3973.
[3] [3] Bradley C C, Sackett C A, Tollett J J, et al. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions[J]. Phys. Rev. Lett., 1995, 75(9): 1687-1690.
[4] [4] Andrews M R, Townsend C G, Miesner H J, et al. Observation of interference between two Bose condensates[J]. Science, 1997, 275(5300): 637-641.
[5] [5] Hagley E W, Deng L, Kozuma M, et al. Measurement of the coherence of a Bose-Einstein condensate[J]. Phys. Rev. Lett., 1999, 83(16): 3112-3115.
[7] [7] Barnert S M, Franke-Arnold S, Arnold A S, et al. Coherence length for a trapped Bose gas[J]. J. Phys. B: At. Mol. Opt. Phys., 2000, 33(19): 4177-4191.
[8] [8] Donner T, Ritter S, Bourdel T, et al. Critical behavior of a trapped interacting Bose gas[J]. Science, 2007, 315(5818): 1556-1558.
[9] [9] Xiong Wei, Zhou Xiaoji, Yue Xuguang, et al. Critical correlations in an ultra-cold Bose gas revealed by means of a temporal Talbot-Lau interferometer[J]. Laser Phys. Lett., 2013, 10(12): 125502.
[10] [10] Bezett A, Toth E, Blakie P B. Two-point correlations of a trapped interacting Bose gas at finite temperature[J]. Phys. Rev. A, 2008, 77(2): 023602.
[11] [11] Naraschewski M, Glauber R J. Spatial coherence and density correlations of trapped Bose gases[J]. Phys. Rev. A, 1999, 59(6): 4595-4607.
[12] [12] Bloch I, Hansch T W, Esslinger T. Measurement of the spatial coherence of a trapped Bose gas at the phase transition[J]. Nature, 2000, 403(6766): 166-170.
[13] [13] Anderson B P, Kasevich M A. Macroscopic quantum interference from atomic tunnel arrays[J]. Science, 1998, 282(5394): 1686-1689.
[14] [14] Orzel C, Tuchman A K, Fenselau M L, et al. Squeezed states in a Bose-Einstein condensate[J]. Science, 2001, 291(5512): 2386-2389.
[15] [15] Wang Bing, Zhu Qiang, Zhou Hailong, et al. Measurement of phase fluctuations of Bose-Einstein condensates in an optical lattice[J]. Phys. Rev. A, 2012, 8(5): 053609.
[17] [17] Zambelli F, Pitaevskii L, Stamper-Kurn D M, et al. Dynamic structure factor and momentum distribution of a trapped Bose gas[J]. Phys. Rev. A, 2000, 61(6): 063608.
[18] [18] Sapiro R E, Zhang R, Raithel G. Reversible loss of superfluidity of a Bose-Einstein condensate in a 1D optical lattice[J]. New J. Phys., 2009, 11(1): 013013.
[19] [19] Gould P L, Ruff G A, Pritchard D E. Diffraction of atoms by light: The near-resonant Kapitza-Dirac effect[J]. Phys. Rev. Lett., 1986, 5(8): 827-830.
[20] [20] Bezett A, Blakie P B. Critical properties of a trapped interacting Bose gas[J]. Phys. Rev. A, 2009, 79(3): 033611.
[21] [21] Pethick C J, Smith H. Bose-Einstein Condensation in Dilute Gases[M]. Cambridge: Cambridge University Press, 2008: 21-23.
[22] [22] Lu Baolong, Tan Xinzhou, Wang Bing, et al. Phase transition to Bose-Einstein condensation for a bosonic gas confined in a combined trap[J]. Phys. Rev. A, 2010, 82(5): 053629.
Get Citation
Copy Citation Text
SUN Chao, WANG Bing, ZHU Qiang, XIONG Dezhi. First-order spatial coherence of ultracold Bose gas above phase transition temperature[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 456
Category:
Received: Apr. 22, 2015
Accepted: --
Published Online: Oct. 24, 2016
The Author Email: Chao SUN (chaosun05@gmail.com)