Journal of Inorganic Materials, Volume. 36, Issue 5, 451(2021)

Reflective Property of Inorganic Electrochromic Materials

Xiang ZHANG1... Wenjie LI2, Lebin WANG1, Xi CHEN1, Jiupeng ZHAO2 and Yao LI1,* |Show fewer author(s)
Author Affiliations
  • 11. Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
  • 22. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • show less
    References(45)

    [1] DEB S. A novel electrophotographic system[J]. Applied Optics, 8, 192-195(1969).

    [2] ZHANG X, LI W J, LI Y et al. Research progress of inorganic all-solid-state electrochromic devices[J]. Materials Science and Technology, 28, 140-149(2020).

    [4] LI W J, ZHANG X, CHEN X et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices[J]. Chemical Engineering Journal, 398, 125628(2020).

    [5] GREER B[J]. Control System for Electrochromic Devices. U.S. Patent 7277215(2007).

    [6] WANG Z, PRADHAN A, ROZBICKI R[J]. Electrochromic Devices. U.S. Patent 8764951(2014).

    [7] XU Q F, LI J, ZHAO J[J]. A Kind of Electrochromic Glass. China, CN204595399U(2015).

    [8] ZHAO Y M, ZHANG X, CHEN X et al. Preparation of WO3 films with controllable crystallinity for improved near-Infrared electrochromic performances[J]. ACS Sustainable Chemistry & Engineering, 8, 11658-11666(2020).

    [9] XIA X H, TU J P, ZHANG J et al. Morphology effect on the electrochromic and electrochemical performances of NiO thin films[J]. Electrochimica Acta, 53, 5721-5724(2008).

    [10] LI W J, ZHANG X, CHEN X et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices[J]. Electrochimica Acta, 355, 136817(2020).

    [11] ZHOU D, XIE D, XIA X H et al. All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications[J]. Science China Chemistry, 60, 3-12(2017).

    [14] YU H T, SHAO S, YAN L J et al. Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application[J]. Journal of Materials Chemistry C, 4, 2269-2273(2016).

    [15] CHANDRASEKHAR P, ZAY B J, BIRUR G C et al. Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices[J]. Advanced Functional Materials, 12, 95-103(2002).

    [16] CHERNOVA N A, ROPPOLO M, DILLON A C et al. Layered vanadium and molybdenum oxides: batteries and electrochromics[J]. Journal of Materials Chemistry, 19, 2526-2552(2009).

    [17] TONG Z Q, LI N, LV H M et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device[J]. Solar Energy Materials and Solar Cells, 146, 135-143(2016).

    [18] ZHAO G F, WANG W Q, WANG X L et al. A multicolor electrochromic film based on a SnO2/V2O5 core/shell structure for adaptive camouflage[J]. Journal of Materials Chemistry C, 7, 5702-5709(2019).

    [20] ZHANG W, LI H Z, YU W W et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices[J]. Light: Science & Applications, 9, 121(2020).

    [22] REDEL E, MLYNARSKI J, MOIR J et al. Electrochromic Bragg mirror: ECBM[J]. Advanced Materials, 24, 265-269(2012).

    [23] XIAO L L, LV Y, LIN J et al. WO3-based electrochromic distributed Bragg reflector: toward electrically tunable microcavity luminescent device[J]. Advanced Optical Materials, 6, 1-8(2018).

    [25] ARAKI S, NAKAMURA K, KOBAYASHI K et al. Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black[J]. Advanced Materials, 24, 122-126(2012).

    [27] LI N, WEI P, YU L et al. Dynamically switchable multicolor electrochromic films[J]. Small, 15, 1-7(2019).

    [28] SWANSON T D, BIRUR G C. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering, 23, 1055-1065(2003).

    [29] LI H, XIE K, PAN Y et al. Variable emissivity infrared electrochromic device based on polyaniline conducting polymer[J]. Synthetic Metals, 159, 1386-1388(2009).

    [30] LOUET C, CANTIN S, DUDON J P et al. A comprehensive study of infrared reflectivity of poly (3, 4-ethylenedioxythiophene) model layers with different morphologies and conductivities[J]. Solar Energy Materials and Solar Cells, 143, 141-151(2015).

    [31] ZHANG L P, WANG B, LI X B et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers[J]. Journal of Materials Chemistry C, 7, 9878-9891(2019).

    [32] MODINE F A, SMITH D Y. Approximate formulas for the amplitude and the phase of the infrared reflectance of a conductor[J]. Journal of The Optical Society of America A-Optics Image Science and Vision, 1, 1171-1174(1984).

    [33] HALE J S, WOOLLAM J A. Prospects for IR emissivity control using electrochromic structures[J]. Thin Solid Films, 339, 174-180(1999).

    [34] FRANKE E B, TRIMBLE C L, SCHUBERT M et al. All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region[J]. Applied Physics Letters, 77, 930-932(2000).

    [35] BESSIERE A, MARCEL C, MORCRETTE M et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control[J]. Journal of Applied Physics, 91, 1589-1594(2002).

    [36] SAUVET K, SAUQUES L, ROUGIER A et al. IR electrochromic WO3 thin films: from optimization to devices[J]. Solar Energy Mater. Solar Cells, 93, 2045-2049(2009).

    [37] SAUVET K, SAUQUES L, ROUGIER A et al. Electrochromic properties of WO3 as a single layer and in a full device: from the visible to the infrared[J]. Journal of Physics and Chemistry of Solids, 71, 696-699(2010).

    [38] KISLOV N, GROGER H, PONNAPPAN R. All-solid-state electrochromic variable emittance coatings for thermal management in space[C]. AIP Conference Proceedings, 654, 172-179(2003).

    [39] KISLOV N, GROGER H, PONNAPPAN R et al. Electrochromic variable emittance devices on silicon wafer for spacecraft thermal control[C]. AIP Conference Proceedings, 699, 112-118(2004).

    [40] DEMIRYONT H, MOOREHEAD D. Electrochromic emissivity modulator for spacecraft thermal management[J]. Solar Energy Materials and Solar Cells, 93, 2075-2078(2009).

    [41] HUANG Y S, ZHANG Y Z, ZENG X T et al. Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics[J]. Applied Surface Science, 202, 104-109(2002).

    [42] LARSSON A L, NIKLASSON G A. Infrared emittance modulation of all-thin-film electrochromic devices[J]. Materials Letters, 58, 2517-2520(2004).

    [43] ZHANG X, TIAN Y L, LI W J et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films[J]. Solar Energy Materials and Solar Cells, 200, 109916(2019).

    [45] MANDAL J, DU S, DONTIGNY M et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management[J]. Advanced Functional Materials, 28, 1-8(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xiang ZHANG, Wenjie LI, Lebin WANG, Xi CHEN, Jiupeng ZHAO, Yao LI. Reflective Property of Inorganic Electrochromic Materials[J]. Journal of Inorganic Materials, 2021, 36(5): 451

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: TOPLCAL SECTION

    Received: Aug. 14, 2020

    Accepted: --

    Published Online: Nov. 25, 2021

    The Author Email: Yao LI (yaoli@hit.edu.cn)

    DOI:10.15541/jim20200465

    Topics