Journal of the Chinese Ceramic Society, Volume. 50, Issue 5, 1263(2022)
Construction and Properties of All-Solid-State Z-Scheme MoS2/RGO/Fe2O3 Composites
[2] [2] WEI Y Z, WANG J Y, YU R B, et al. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting[J]. Angew Chem Int Edit, 2019, 58(5): 1436-1440.
[4] [4] LEWIS N S, NOCERA D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Natl Acad Sci USA, 2006, 103(43): 15729-15735.
[6] [6] UMER M, TAHIR M, AZAM M U, et al. Synergistic effects of single/multi-walls carbon nanotubes in TiO2 and process optimization using response surface methodology for photo-catalytic H2 evolution[J]. J Environ Chem Eng, 2019, 7(5): 103361.
[8] [8] XU Q L, ZHANG L Y, CHENG B, et al. S-Scheme Heterojunction Photocatalyst[J]. Chem, 2020, 6(7): 1-17.
[9] [9] LU X Y, XIE J, CHEN X B, et al. Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions[J]. Appl Catal B-Environ, 2019, 252(5): 250-259.
[10] [10] JANG J S, JANG H G, LEE J S. Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting[J]. Catal Today, 2012, 185(1): 270-277.
[11] [11] LINSEBIGLER A, LU G, YATES J. Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results[J]. Chem Rev, 1995, 95(3): 735-738.
[12] [12] LI X, YU J, LOW J, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. J Mater Chem A, 2015, 3(6): 2485-2534.
[13] [13] TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nat Mater, 2006(10): 782-786.
[14] [14] ZhANG L, WONG K H, CHEN Z, et al. AgBr-Ag-Br2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components[J]. Appl Catal A: Gen, 2009, 363(1-2): 211-229.
[15] [15] YU Z B, XIE Y P, LIU G, et al. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution[J]. J Mater Chem A, 2013, 1(8): 2773-2776.
[16] [16] LIU Z, ZHAO Z G, MIYAUCHI M, et al. Efficient visible light active CaFe2O4/WO3 based composite photocatalysts: Effect of interfacial modification[J]. Chem C, 2009, 113(39): 17132-17137.
[17] [17] HOU J, YANG C, WANG Z, et al. Three-dimensional Z-scheme AgCl/Ag/γ-TaON heterostructural hollow spheres for enhanced visible-light photocatalytic performance[J]. Appl Catal B, 2013, 142-143: 579-589.
[18] [18] HOU J, CHENG H, TAKEDA O, et al. Threedimensional bimetal- graphene-semiconductor coaxial nanowire arrays to harness charge flow for the photochemical reduction of carbon dioxide[J]. Angew Chem Int Ed, 2015, 54(29): 8480-8484.
[19] [19] JIANG J, YU J G, CAO S. Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light[J]. Colloid Interface Sci, 2016, 461(1): 56-63.
[20] [20] LI A, ZHANG P, CHANG X et al. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol[J]. Small, 2015, 11(16): 1892.
[21] [21] LONG R, LI Y, SONG L, et al. Coupling solar energy into reactions: Materials design for surface plasmon-mediated catalysis[J]. Small, 2015, 11(32): 3873-3889.
[22] [22] RAJPUT S, CHEN M X, LIU Y, et al. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction[J]. Nat Commun, 2013(4): 2752.
[23] [23] CAO S, YU J. Carbon-based H2-production photocatalytic materials[J]. Photochem Photobiol C, 2016, 27: 72-99.
[24] [24] BAI S, WANG L, CHEN X, et al. Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals[J]. Nano Res, 2015, 8: 175-183.
[25] [25] LUKOWSKI M A, DANIEL A S, MENG F, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy Environ Sci, 2014, 7(8): 2608-2613.
[26] [26] Mahler B, Hoepfner V, Liao K, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution[J]. Chem Soc, 2014, 136(40): 14121-14127.
[27] [27] SONG S, CHENG B, YU J, et al. Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants[J]. Appl Cata B, 2016, 181: 71-78.
[28] [28] COLEMAN J N. Liquid exfoliation of defect-free graphene[J]. Acc Chem Res, 2013, 46(1): 14-22.
[30] [30] NITHYA T, SANKEERTHANA B, ARULRA A, et al. Visible light induced efficient hydrogen production through semiconductor- conductor-semiconductor (S-C-S) interfaces formed between g-C3N4 and rGO/Fe2O3 core-shell composites[J]. Catal Sci Techno, 2018, 8(19): 5081-5090.
[31] [31] MOTOLA M, BAUDYS M, ZAZPE R, et al. 2D MoS2 nanosheets on 1D anodic TiO2 nanotube layers: an efficient co-catalyst for liquid and gas phase photocatalysis[J]. Nanoscale, 2019, 11(48): 23126-23131.
[32] [32] CHEN B, MENG Y H, SHA J W. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective[J]. Nanoscale, 2018, 10: 34-68.
[33] [33] WANG S, TANG B W, YANG W L, et al. The flower-like heterostructured Fe2O3/MoS2 coated by amorphous Si-oxyhydroxides: An effective surface modification method for sulfide photocatalysts in photo-fenton reaction[J]. J J Alloys Compd, 2019, 784(5): 1099-1105.
[34] [34] GUERRA E, SHANMUGHARAJ A, CHOI W, et al. Thermally reduced graphene oxide-supported nickel catalyst for hydrogen production by propane steam reforming[J]. Appl Catal A, 2013, 468(5): 467-474.
[35] [35] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
[36] [36] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheet[J]. Nature, 2007, 446(7131): 60-63.
[37] [37] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
[38] [38] LIU L, LANG J, ZHANG P, et al. Facile synthesis of Fe2O3 nano- dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte[J]. ACS Appl Mater Interfaces, 2016, 8(14): 9335-9344.
[39] [39] ZHENG X, XU J, YAN K, et al. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chem Mater, 2014, 26(7): 2344-2353.
[40] [40] ZHAO X, ZHU H, YANG X. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution[J]. Nanoscale, 2014, 6(18): 10680-10685.
[41] [41] ZHANG N, YANG M Q, TANG Z R, et al. Toward improving the graphene semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator[J]. ACS Nano, 2014, 8(1): 623-633.
Get Citation
Copy Citation Text
JIAO Yongxin, WANG Shu, YIN Jianan, SUN Yu, LI Xin, LIU Yupu. Construction and Properties of All-Solid-State Z-Scheme MoS2/RGO/Fe2O3 Composites[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1263
Category:
Received: Sep. 10, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: Yongxin JIAO (1598460841@qq.com)
CSTR:32186.14.