Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 229(2024)

Research Progress on BaxSr1-xTiO3 Ferroelectric Thin Film Materials and Devices for Tunable Microwave Applications

SHEN Dekun1, YANG Zihan1,2, GUO Peiyuan1, ZHAO Mengling1, GE Jian1, DENG Gongxun1, and WANG Aiji1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(76)

    [1] [1] JIANG Shuwen, LI Ruguan, WANG Luyu, et al. J Univ Electron Sci Technol China, 2009, 38(5): 609-617.

    [2] [2] WANG Geng, FU Qiuyun, ZHANG Lu, et al. Mater Rep, 2019, 33(13): 2151-2158.

    [3] [3] ZHANG Guangyi. Mod Radar, 1996, 18(4): 1-7.

    [4] [4] QIN Yangxiao, LI Zhuo, LIANG Wenxue, et al. Piezoelectrics Acoustooptics, 2018, 40(1): 95-100.

    [5] [5] JIAO T J, YOU C Y, TIAN N, et al. High tunability and low loss via establishing an internal electric field in LiFe5O8/Ba0.6Sr0.4TiO3 composite films using chemical solution deposition method[J]. Appl Surf Sci, 2022, 590: 153112.

    [6] [6] GU Z Q, PANDYA S, SAMANTA A, et al. Resonant domain-wall-enhanced tunable microwave ferroelectrics[J]. Nature, 2018, 560(7720): 622-627.

    [7] [7] WANG W, XIN L, REN L C, et al. Enhanced dielectric properties in median-temperature sintered Ba0.4Sr0.6TiO3-CuGa2O4 composite ceramics[J]. J Alloys Compd, 2020, 837: 155553.

    [8] [8] FETEIRA A, SINCLAIR D C, REANEY I M, et al. BaTiO3-based ceramics for tunable microwave applications[J]. J Am Ceram Soc, 2004, 87(6): 1082-1087.

    [9] [9] KUO Y L, WU J M. Tunable dielectric properties of lead barium zirconate niobate films[J]. Appl Phys Lett, 2006, 89(13): 132911.

    [10] [10] LIU C, LIU P. Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling[J]. J Alloys Compd, 2014, 584: 114-118.

    [11] [11] CHEN C, WEI A Q, LI Y H, et al. Improved tunable properties of Co doped Ba0.8Sr0.2TiO3 thin films prepared by sol-gel method[J]. J Alloys Compd, 2017, 692: 204-211.

    [12] [12] SHEN S T, XIN L, REN L C, et al. Effects of vacancy defects caused by non-stoichiometric ratio on dielectric properties of ABO3 perovskite (Ba0.5Sr0.5)xTiO3 ceramics[J]. Ceram Int, 2020, 46(8): 11943-11949.

    [13] [13] HUANG Xin, FAN Qingqing, ZHAI Yuguang, et al. Piezoelectrics Acoustooptics, 2020, 42(3): 340-344.

    [14] [14] ZHANG Xuefeng, LI Huirong, WU Zhaoyu. J Mater Eng , 2009, 37(9): 16-19.

    [15] [15] LU S G, ZHU X H, MAK C L, et al. High tunability in compositionally graded epitaxial barium strontium titanate thin films by pulsed-laser deposition[J]. Appl Phys Lett, 2003, 82(17): 2877-2879.

    [16] [16] COLE M W, NGO E, HIRSCH S, et al. The fabrication and material properties of compositionally multilayered Ba1-xSrxTiO3 thin films for realization of temperature insensitive tunable phase shifter devices[J]. J Appl Phys, 2007, 102(3): 034104.

    [17] [17] ABDUL KHALID M F, HOLLAND A S, GHORBANI K. Influence of post-annealing on the performance of BST thin film varactors[C]//2014 Asia-Pacific Microwave Conference. Sendai, Japan. IEEE, 2015: 309-311.

    [18] [18] ZHANG Qinyong, JIANG Shuwen, LI Yanrong. Mater Rev, 2006, 20(11): 115-118.

    [19] [19] LIAO J X, YANG C R, ZHANG J H, et al. The interfacial structures of (Ba, Sr)TiO3 films deposited by radio frequency magnetron sputtering[J]. Appl Surf Sci, 2006, 252(20): 7407-7414.

    [20] [20] LIU H R, AVRUTIN V, ZHU C Y, et al. Enhanced microwave dielectric tunability of Ba0.5Sr0.5TiO3 thin films grown with reduced strain on DyScO3 substrates by three-step technique[J]. J Appl Phys, 2013, 113(4): 044108.

    [21] [21] EMADI F, NEMATI A, HINTERSTEIN M, et al. Microstructural, optical, and electrical characteristics of Ni/C doped BST thin films[J]. Ceram Int, 2019, 45(5): 5503-5510.

    [22] [22] CHONG K B, KONG L B, CHEN L F, et al. Improvement of dielectric loss tangent of Al2O3 doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices[J]. J Appl Phys, 2004, 95(3): 1416-1419.

    [23] [23] IM J, AUCIELLO O, BAUMANN P K, et al. Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+yO3+z thin films for voltage tunable devices[J]. Appl Phys Lett, 2000, 76(5): 625-627.

    [24] [24] GAO L B, GUAN Z P, HUANG S X, et al. Enhanced dielectric properties of barium strontium titanate thin films by doping modification[J]. J Mater Sci Mater Electron, 2019, 30(14): 12821-12839.

    [25] [25] GAO L N, ZHAI J W, YAO X. The influence of Co doping on the dielectric, ferroelectric and ferromagnetic properties of Ba0.70Sr0.30TiO3 thin films[J]. Appl Surf Sci, 2009, 255(8): 4521-4525.

    [26] [26] JOSHI P C, COLE M W. Mg-doped Ba0.6Sr0.4TiO3 thin films for tunable microwave applications[J]. Appl Phys Lett, 2000, 77(2): 289-291.

    [27] [27] JUN S, KIM Y S, LEE J, et al. Dielectric properties of strained (Ba, -Sr)TiO3 thin films epitaxially grown on Si with thin yttria-stabilized zirconia buffer layer[J]. Appl Phys Lett, 2001, 78(17): 2542-2544.

    [28] [28] LIU W L, LIAO J X, WANG S Z, et al. Significant reduction of dielectric loss of Ba0.51Sr0.34TiO3 film modified by Y/Mn alternate doping and preheating[J]. Ceram Int, 2018, 44(13): 15653-15659.

    [29] [29] GEVORGIAN S, PETROV P K, IVANOV Z, et al. Tailoring the temperature coefficient of capacitance in ferroelectric varactors[J]. Appl Phys Lett, 2001, 79(12): 1861-1863.

    [30] [30] LIU W L, LEI Y J, FENG W, et al. Comprehensive dielectric performance of alternately doped BST multilayer films coated with strontium titanate thin layers[J]. J Mater Res Technol, 2021, 13: 385-396.

    [31] [31] LIU W L, TAO L, FENG W, et al. Sandwich-type composite multilayer films of strontium titanate and Barium strontium titanate and their controllable dielectric properties[J]. J Mater Sci Technol, 2021, 85: 245-254.

    [32] [32] VILARINHO P M, FU Z, KINGON A I, et al. Low loss tunable dielectric BaNd2Ti5O14-(Ba0.5Sr0.5)TiO3 composite thick films[J]. Scr Mater, 2018, 155: 160-163.

    [33] [33] CHANG W, HORWITZ J S, CARTER A C, et al. The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films[J]. Appl Phys Lett, 1999, 74(7): 1033-1035.

    [34] [34] CUKAUSKAS E J, KIRCHOEFER S W, CHANG W. Morphology and dielectric properties of Ba0.5Sr0.5TiO3 thin films on annealed (1 0 0) MgO[J]. J Cryst Growth, 2002, 236(1-3): 239-247.

    [35] [35] CHENG B L, WANG S Y, LU H B, et al. Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba0.02Sr0.98)TiO3 thin films grown on MgO substrate by pulsed laser deposition[J]. Thin Solid Films, 2005, 485(1-2): 82-89.

    [36] [36] ABDEL-MOTALEB I, AKULA B, LEEDY K, et al. Oxygen effects on Barium strontium titanate morphology and MOS device performance[J]. Mater Lett, 2013, 92: 389-392.

    [37] [37] PARK B H, JIA Q X. Enhanced dielectric properties of (Ba, Sr)TiO3 thin tilms applicable to tunable microwave devices[J]. Jpn J Appl Phys, 2002, 41(Part 1, No. 11B): 7222-7225.

    [38] [38] KIM W J, WU H D, CHANG W, et al. Microwave dielectric properties of strained (Ba0.4Sr0.6)TiO3 thin films[J]. J Appl Phys, 2000, 88(9): 5448-5451.

    [39] [39] JUN S, LEE J. Growth of epitaxial (Ba 0.5, Sr0.5)TiO3 thin films on silicon with a thin buffer layer[J]. Ferroelectrics, 2002, 271(1): 21-26.

    [40] [40] WANG J, ZHANG T J, XIA H Y, et al. Influence of YSZ buffer layer on the electric properties of compositionally graded (Ba, Sr)TiO3 thin film[J]. J Sol Gel Sci Technol, 2008, 47(1): 102-106.

    [41] [41] ZHANG T J, WANG J Z, ZHANG B S, et al. The influence of YSZ interlayer on microstructures and dielectric properties of BST thin films prepared by RF magnetron sputtering[J]. J Mater Sci Mater Electron, 2007, 18(8): 877-882.

    [42] [42] ZHAO Dongyue, LIU Baoting, GUO Zhe, et al. J Synth Cryst, 2011, 40(1): 161-165.

    [43] [43] ZHU W C, CHENG J R, YU S W, et al. Enhanced tunable properties of Ba0.6Sr0.4TiO3 thin films grown on Pt/Ti/SiO2/Si substrates using MgO buffer layers[J]. Appl Phys Lett, 2007, 90(3): 032907.

    [44] [44] MIKHEEV E, KAJDOS A P, HAUSER A J, et al. Electric field-tunable BaxSr1-xTiO3 films with high figures of merit grown by molecular beam epitaxy[J]. Appl Phys Lett, 2012, 101(25): 252906.

    [45] [45] MEYERS C J G, FREEZE C R, STEMMER S, et al. Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE[J]. Appl Phys Lett, 2017, 111(26): 262903.

    [46] [46] CHANG W, SENGUPTA L. MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications[J]. J Appl Phys, 2002, 92(7): 3941-3946.

    [47] [47] KIM K T, KIM C I. The effect of Cr doping on the microstructural and dielectric properties of (Ba0.6Sr0.4)TiO3 thin films[J]. Thin Solid Films, 2005, 472(1-2): 26-30.

    [48] [48] SEKHAR K C, HONG K P, KEY S H, et al. Enhanced dielectric and tunable characteristics of K-doped Ba0.5Sr0.5TiO3 thin films prepared by pulsed laser deposition[J]. Thin Solid Films, 2013, 527: 267-272.

    [49] [49] LUO W, CHEN X Y, FAN J W, et al. Effect of Rb-doping on the dielectric and tunable properties of Ba0.6Sr0.4TiO3 thin films prepared by sol-gel[J]. Ceram Int, 2016, 42(15): 17229-17236.

    [50] [50] HUANG J Q, LIAO J X, ZHANG W F, et al. Structures and dielectric properties of K and Mg alternately doped BST films[J]. Integr Ferroelectr, 2015, 162(1): 94-101.

    [51] [51] YANG H Y, LIAO J X, FENG T T, et al. Dielectric properties of improved Y and Mn alternately doped BST films[J]. Integr Ferroelectr, 2016, 171(1): 108-114.

    [52] [52] LIAO J X, XU Z Q, WEI X B, et al. Influence of preheating on crystallization and growing behavior of Ce and Mn doped Ba0.6Sr0.4TiO3 film by sol-gel method[J]. Surf Coat Technol, 2012, 206(22): 4518-4524.

    [53] [53] LIU W F, ZHAO Y, JIN Y H, et al. Enhanced dielectric tunability and reduced dielectric loss in the La/Fe co-doped Ba0.65Sr0.35TiO3 ceramics[J]. J Alloys Compd, 2022, 901: 163642.

    [54] [54] TABATA H, TANAKA H, KAWAI T. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties[J]. Appl Phys Lett, 1994, 65(15): 1970-1972.

    [55] [55] FU W Y, WANG H, CAO L Z, et al. Bi1.5Zn1.0Nb1.5O7∕Mn-doped Ba0.6Sr0.4TiO3 heterolayered thin films with enhanced tunable performance[J]. Appl Phys Lett, 2008, 92(18): 182910.

    [56] [56] WANG H Z, DONG Y X, WANG Z M. High tunable dielectric properties of Zn and Mg alternately doped Ba0.6Sr0.4TiO3 film varactors[J]. J Alloys Compd, 2018, 745: 651-658.

    [57] [57] KOUTSAROFF I P, BERNACKI T, ZELNER M, et al. Microwave properties of parallel plate capacitors based on (Ba, Sr)TiO3 thin films grown on SiO2/Al2O3 substrates[J]. MRS Online Proc Libr, 2004, 784(1): 581-587.

    [58] [58] VICTOR A, NATH J, GHOSH D, et al. A voltage controlled oscillator using Barium strontium titanate (BST) thin film varactor[C]//Proceedings of 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746). Atlanta, GA, USA. IEEE, 2005: 91-94.

    [59] [59] LI Ruguan. Investigation of low loss BZN/BST thin films and varactor technologies[D]. Chengdu: University of Electronic Science and Technology of China, 2013.

    [60] [60] WALK D, KIENEMUND D, SALG P, et al. Highly accurate analytic modeling of dispersive field distributions in MIM capacitances with electrodes thinner than skin depth[J]. IEEE Trans Microw Theory Tech, 2019, 67(12): 4665-4673.

    [61] [61] WALK D, KIENEMUND D, AGRAWAL P, et al. Suppression of acoustic resonances in all-oxide varactors[C]//2020 IEEE/MTT-S International Microwave Symposium (IMS). Los Angeles, CA, USA. IEEE, 2020: 139-142.

    [62] [62] WALK D, SALG P, KIENEMUND D, et al. Characterization and modeling of epitaxially grown BST on a conducting oxide electrode[C]//2018 48th European Microwave Conference (EuMC). Madrid, Spain. IEEE, 2018: 563-566.

    [63] [63] LIANG X P, ZHU Y F. Hybrid resonator microstrip line electrically tunable filter[C]//2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157). Phoenix, AZ. IEEE, 2002: 1457-1460.

    [64] [64] XU J, LIANG X P, SHAMSAIFAR K. Full wave analysis and design of RF tunable filters[C]//2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157). Phoenix, AZ. IEEE, 2002: 1449-1452.

    [65] [65] WANG Wenjun. Design of tunable microwave filter based on BST thin film[D]. Chengdu: University of Electronic Science and Technology of China, 2013.

    [66] [66] WANG Hongzhe. Mechanism of alternating doping on dielectric tuning properties of Ba1-xSrxTiO3 thin films and its simulation in filters[D]. Nanjing: Southeast University, 2020.

    [67] [67] KUYLENSTIERNA D, ASH E, VOROBIEV A, et al. X-band left handed phase shifter using thin film Ba0.25Sr0.75TiO3 ferroelectric varactors[C]//2006 European Microwave Conference. Manchester, UK. IEEE, 2007: 847-850.

    [68] [68] SAZEGAR M, ZHENG Y L, MAUNE H, et al. Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics[J]. IEEE Trans Microw Theory Tech, 2011, 59(5): 1265-1273.

    [69] [69] MAHMUD A, KALKUR T S, JAMIL A, et al. A 1-GHz active phase shifter with a ferroelectric varactor[J]. IEEE Microw Wirel Compon Lett, 2006, 16(5): 261-263.

    [70] [70] NING Xi. Research on silicon integrated ferroelectric thin film phase shifters at tera-hertz[D]. Changsha: National University of Defense Technology, 2016.

    [71] [71] LI R G, JIANG S W, GAO L B, et al. A distributed phase shifter using Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 thin films[J]. Chin Phys Lett, 2013, 30(7): 078503.

    [72] [72] ZHENG Lifang, JIN Jie, LI Xi, et al. Acta Sci Nat Univ Nankaiensis, 2020, 53(1): 81-84.

    [73] [73] DAJUN Wu, JIANMING Dai, XINGDONG Tao, et al. Scanning end-fire array antenna based on boundary scan test (BST) film phase shifter (in Chinese). CN102593588A. 2012-07-18.

    [74] [74] VICTOR A, NATH J, GHOSH D, et al. Voltage controlled GaN-on-Si HFET power oscillator using thin-film ferroelectric varactor tuning[C]//2006 European Microwave Conference. Manchester, UK. IEEE, 2007: 87-90.

    [75] [75] KONG C, LI H, JIANG S W, et al. A monolithic AlGaN/GaN HEMT VCO using BST film varactor[C]//2011 IEEE International Symposium on Radio-Frequency Integration Technology. Beijing, China. IEEE, 2012: 197-200.

    [76] [76] WANG Xu, LI Na, SUN Liang, et al. Vac Electron, 2012(3): 33-38.

    Tools

    Get Citation

    Copy Citation Text

    SHEN Dekun, YANG Zihan, GUO Peiyuan, ZHAO Mengling, GE Jian, DENG Gongxun, WANG Aiji. Research Progress on BaxSr1-xTiO3 Ferroelectric Thin Film Materials and Devices for Tunable Microwave Applications[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 229

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 22, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Aiji WANG (aijiwang@bnu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics