Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618011(2024)

Polarized Fluorescence Microscopy and Recent Progress (Invited)

Mingzhe Wei, Junyu Liu, Min Guo**, and Huafeng Liu*
Author Affiliations
  • State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(96)

    [1] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [2] Kubitscheck U[M]. Fluorescence microscopy: from principles to biological applications(2017).

    [3] Lakowicz J R[M]. Principles of fluorescence spectroscopy(2006).

    [4] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 78, 993-1016(2009).

    [5] Sahl S J, Hell S W, Jakobs S. Fluorescence nanoscopy in cell biology[J]. Nature Reviews: Molecular Cell Biology, 18, 685-701(2017).

    [6] Reinhardt S C M, Masullo L A, Baudrexel I et al. Ångström-resolution fluorescence microscopy[J]. Nature, 617, 711-716(2023).

    [7] Haraguchi T, Shimi T, Koujin T et al. Spectral imaging fluorescence microscopy[J]. Genes to Cells, 7, 881-887(2002).

    [8] Jahr W, Schmid B, Schmied C et al. Hyperspectral light sheet microscopy[J]. Nature Communications, 6, 7990(2015).

    [9] Datta R, Heaster T M, Sharick J T et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications[J]. Journal of Biomedical Optics, 25, 071203(2020).

    [10] Levchenko S M, Pliss A, Qu J L. Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes[J]. Journal of Innovative Optical Health Sciences, 11, 1730009(2018).

    [11] Axelrod D. Fluorescence polarization microscopy[M]. Methods in cell biology, 30, 333-352(1989).

    [12] Xu Z B, Zhou W X, Xu D D et al. Research progress of fluorescence polarization modulation microscopy imaging technology[J]. Laser & Optoelectronics Progress, 58, 2400006(2021).

    [13] Brasselet S, Alonso M A. Polarization microscopy: from ensemble structural imaging to single-molecule 3D orientation and localization microscopy[J]. Optica, 10, 1486-1510(2023).

    [14] Chandler T, Shroff H, Oldenbourg R et al. Spatio-angular fluorescence microscopy I. Basic theory[J]. Journal of the Optical Society of America A, 36, 1334-1345(2019).

    [15] Chandler T, Shroff H, Oldenbourg R et al. Spatio-angular fluorescence microscopy II. Paraxial 4f imaging[J]. Journal of the Optical Society of America A, 36, 1346-1360(2019).

    [16] Chandler T, Shroff H, Oldenbourg R et al. Spatio-angular fluorescence microscopy III. Constrained angular diffusion, polarized excitation, and high-NA imaging[J]. Journal of the Optical Society of America A, 37, 1465-1479(2020).

    [17] Mehta S B, McQuilken M, La Riviere P J et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, E6352-E6361(2016).

    [18] Zhanghao K, Chen X Y, Liu W H et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J]. Nature Communications, 10, 4694(2019).

    [19] McQuilken M, Jentzsch M S, Verma A et al. Analysis of septin reorganization at cytokinesis using polarized fluorescence microscopy[J]. Frontiers in Cell and Developmental Biology, 5, 42(2017).

    [20] Hafi N, Grunwald M, van den Heuvel L S et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing[J]. Nature Methods, 11, 579-584(2014).

    [21] Zhanghao K, Chen L, Yang X S et al. Super-resolution dipole orientation mapping via polarization demodulation[J]. Light, Science & Applications, 5, e16166(2016).

    [22] Zheng C, Zhao G Y, Liu W J et al. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF[J]. Optics Letters, 43, 1423-1426(2018).

    [23] Inoue S, Shimomura O, Goda M et al. Fluorescence polarization of green fluorescence protein[J]. The Proceedings of the National Academy of Sciences, 99, 4272-4277(2002).

    [24] Vrabioiu A M, Mitchison T J. Structural insights into yeast septin organization from polarized fluorescence microscopy[J]. Nature, 443, 466-469(2006).

    [25] DeMay B S, Bai X B, Howard L et al. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals[J]. The Journal of Cell Biology, 193, 1065-1081(2011).

    [26] Forkey J N, Quinlan M E, Goldman Y E. Protein structural dynamics by single-molecule fluorescence polarization[J]. Progress in Biophysics and Molecular Biology, 74, 1-35(2000).

    [27] Zhang O M, Lew M D. Single-molecule orientation localization microscopy I: fundamental limits[J]. Journal of the Optical Society of America A, 38, 277-287(2021).

    [28] Zhang O M, Lew M D. Single-molecule orientation localization microscopy II: a performance comparison[J]. Journal of the Optical Society of America A, 38, 288-297(2021).

    [29] Abrahamsson S, McQuilken M, Mehta S B et al. MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously[J]. Optics Express, 23, 7734-7754(2015).

    [30] Bigelow C E, Conover D L, Foster T H. Confocal fluorescence spectroscopy and anisotropy imaging system[J]. Optics Letters, 28, 695-697(2003).

    [31] Kress A, Wang X, Ranchon H et al. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy[J]. Biophysical Journal, 105, 127-136(2013).

    [32] Wang X, Kress A, Brasselet S et al. High frame-rate fluorescence confocal angle-resolved linear dichroism microscopy[J]. The Review of Scientific Instruments, 84, 053708(2013).

    [33] Markwardt M L, Snell N E, Guo M et al. A genetically encoded biosensor strategy for quantifying non-muscle myosin II phosphorylation dynamics in living cells and organisms[J]. Cell Reports, 24, 1060-1070(2018).

    [34] Chandler T, Guo M, Mehta S et al. Three-dimensional fluorophore orientation imaging with multiview polarized microscopy[C], MW3D.2(2018).

    [35] Chandler T. Spatio-angular fluorescence microscopy[D](2020).

    [36] Li W, Wang Y, Shao H R et al. Probing rotation dynamics of biomolecules using polarization based fluorescence microscopy[J]. Microscopy Research and Technique, 70, 390-395(2007).

    [37] Gasecka A, Han T J, Favard C et al. Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry[J]. Biophysical Journal, 97, 2854-2862(2009).

    [38] Lazar J, Bondar A, Timr S et al. Two-photon polarization microscopy reveals protein structure and function[J]. Nature Methods, 8, 684-690(2011).

    [39] Vishwasrao H D, Trifilieff P, Kandel E R. In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy[J]. Biophysical Journal, 102, 1204-1214(2012).

    [40] Gould T J, Gunewardene M S, Gudheti M V et al. Nanoscale imaging of molecular positions and anisotropies[J]. Nature Methods, 5, 1027-1030(2008).

    [41] Ha T, Enderle T, Chemla S et al. Single molecule dynamics studied by polarization modulation[J]. Physical Review Letters, 77, 3979-3982(1996).

    [42] Pfennig D, Albrecht A, Nowak J et al. A device for exploring the full angular excitation space-Can more angular projections improve determination of a molecules 3D-orientation in the presence of noise?[J]. Chemical Physics, 538, 110853(2020).

    [43] Zhang O M, Guo Z J, He Y Y et al. Six-dimensional single-molecule imaging with isotropic resolution using a multi-view reflector microscope[J]. Nature Photonics, 17, 179-186(2023).

    [45] Koike-Tani M, Tani T, Mehta S B et al. Polarized light microscopy in reproductive and developmental biology[J]. Molecular Reproduction and Development, 82, 548-562(2015).

    [46] Dubach J M, Vinegoni C, Mazitschek R et al. In vivo imaging of specific drug-target binding at subcellular resolution[J]. Nature Communications, 5, 3946(2014).

    [47] Borejdo J, Burlacu S. Orientation of actin filaments during motion in in vitro motility assay[J]. Biophysical Journal, 66, 1319-1327(1994).

    [48] Pollok B A, Heim R. Using GFP in FRET-based applications[J]. Trends in Cell Biology, 9, 57-60(1999).

    [49] Truong K, Ikura M. The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo[J]. Current Opinion in Structural Biology, 11, 573-578(2001).

    [50] Sekar R B, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. The Journal of Cell Biology, 160, 629-633(2003).

    [51] Silvius J R, Nabi I R. Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes[J]. Molecular Membrane Biology, 23, 5-16(2006).

    [52] Ni Q, Zhang J, Endo I, Nagamune T. Dynamic visualization of cellular signaling[M]. Nano/micro biotechnology. Advances in biochemical engineering/biotechnology, 119, 79-97(2009).

    [53] Zhanghao K, Gao J T, Jin D Y et al. Super-resolution fluorescence polarization microscopy[J]. Journal of Innovative Optical Health Sciences, 11, 1730002(2018).

    [54] Mattheyses A L, Kampmann M, Atkinson C E et al. Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex[J]. Biophysical Journal, 99, 1706-1717(2010).

    [55] Burghardt T P. Model-Independent fluorescence polarization for measuring order in a biological assembly[J]. Biopolymers, 23, 2383-2406(1984).

    [56] Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization[J]. Biophysical Journal, 26, 557-573(1979).

    [57] Dale R E, Hopkins S C, an der Heide U A et al. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers[J]. Biophysical Journal, 76, 1606-1618(1999).

    [58] Liu H F, Guo M, Liu J Y. Reconstruction method of spatial and angular distribution of fluorescent molecules based on the generalized Richardson Lucy algorithm[P].

    [59] Ferrand P, Gasecka P, Kress A et al. Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores[J]. Biophysical Journal, 106, 2330-2339(2014).

    [60] Li Y N, Cao R J, Ren W et al. High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy[J]. Advanced Photonics Nexus, 3, 016001(2023).

    [61] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [62] Schütz G J, Schindler H, Schmidt T. Imaging single-molecule dichroism[J]. Optics Letters, 22, 651-653(1997).

    [63] Olveczky B P, Periasamy N, Verkman A S. Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy[J]. Biophysical Journal, 73, 2836-2847(1997).

    [64] Forkey J N, Quinlan M E, Goldman Y E. Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy[J]. Biophysical Journal, 89, 1261-1271(2005).

    [65] Dickson R M, Norris D J, Moerner W E. Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis[J]. Physical Review Letters, 81, 5322-5325(1998).

    [66] Böhmer M, Enderlein J. Orientation imaging of single molecules by wide-field epifluorescence microscopy[J]. Journal of the Optical Society of America B, 20, 554-559(2003).

    [67] Patra D, Gregor I, Enderlein J. Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies[J]. The Journal of Physical Chemistry A, 108, 6836-6841(2004).

    [68] Sauer M, Heilemann M. Single-molecule localization microscopy in eukaryotes[J]. Chemical Reviews, 117, 7478-7509(2017).

    [69] Toprak E, Enderlein J, Syed S et al. Defocused orientation and position imaging (DOPI) of myosin V[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 6495-6499(2006).

    [70] Ohmachi M, Komori Y, Iwane A H et al. Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 5294-5298(2012).

    [71] Rimoli C V, Valades-Cruz C A, Curcio V et al. 4polar-STORM polarized super-resolution imaging of actin filament organization in cells[J]. Nature Communications, 13, 301(2022).

    [72] Engelhardt J, Keller J, Hoyer P et al. Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy[J]. Nano Letters, 11, 209-213(2011).

    [73] Backlund M P, Lew M D, Backer A S et al. Simultaneous, accurate measurement of the 3D position and orientation of single molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 19087-19092(2012).

    [74] Backlund M P, Arbabi A, Petrov P N et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask[J]. Nature Photonics, 10, 459-462(2016).

    [75] Lew M D, Backlund M P, Moerner W E. Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy[J]. Nano Letters, 13, 3967-3972(2013).

    [76] Lew M D, Moerner W E. Azimuthal polarization filtering for accurate, precise, and robust single-molecule localization microscopy[J]. Nano Letters, 14, 6407-6413(2014).

    [77] Florine-Casteel K. Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy[J]. Biophysical Journal, 57, 1199-1215(1990).

    [78] Dietrich C, Bagatolli L A, Volovyk Z N et al. Lipid rafts reconstituted in model membranes[J]. Biophysical Journal, 80, 1417-1428(2001).

    [79] Samsonov A V, Mihalyov I, Cohen F S. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes[J]. Biophysical Journal, 81, 1486-1500(2001).

    [80] Scherfeld D, Kahya N, Schwille P. Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol[J]. Biophysical Journal, 85, 3758-3768(2003).

    [81] Baumgart T, Hess S T, Webb W W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[J]. Nature, 425, 821-824(2003).

    [82] Dix J A, Verkman A S. Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity[J]. Biophysical Journal, 57, 231-240(1990).

    [83] Haass C, Selkoe D J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide[J]. Nature Reviews: Molecular Cell Biology, 8, 101-112(2007).

    [84] Iadanza M G, Jackson M P, Hewitt E W et al. A new era for understanding amyloid structures and disease[J]. Nature Reviews: Molecular Cell Biology, 19, 755-773(2018).

    [85] Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton[J]. Nature Reviews: Molecular Cell Biology, 13, 183-194(2012).

    [86] Clayton A H A, Hanley Q S, Arndt-Jovin D J et al. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)[J]. Biophysical Journal, 83, 1631-1649(2002).

    [87] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012).

    [88] Vinegoni C, Dubach J M, Feruglio P F et al. Two-photon fluorescence anisotropy microscopy for imaging and direct measurement of intracellular drug target engagement[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 6801607(2016).

    [89] Brasselet S. Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging[J]. Advances in Optics and Photonics, 3, 205(2011).

    [90] He C, He H H, Chang J T et al. Polarisation optics for biomedical and clinical applications: a review[J]. Light, Science & Applications, 10, 194(2021).

    [91] Gusachenko I, Tran V, Houssen Y G et al. Polarization-resolved second-harmonic generation in tendon upon mechanical stretching[J]. Biophysical Journal, 102, 2220-2229(2012).

    [92] Tilbury K, Lien C H, Chen S J et al. Differentiation of col I and col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality[J]. Biophysical Journal, 106, 354-365(2014).

    [93] Rouède D, Schaub E, Bellanger J J et al. Wavy nature of collagen fibrils deduced from the dispersion of their second-order nonlinear optical anisotropy parameters Ρ[J]. Optics Express, 28, 4845-4858(2020).

    [94] Wang M Y, Chen M, Zhanghao K et al. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information[J]. Nanoscale, 10, 19757-19765(2018).

    [95] He C, Chang J T, Salter P S et al. Revealing complex optical phenomena through vectorial metrics[J]. Advanced Photonics, 4, 026001(2022).

    [96] Wang Y, HeH H, Zeng N et al. Polarized light microscopy based on Mueller matrix and its applications on biomedical studies[J]. World Journal of Complex Medicine, 1, 74-78(2015).

    Tools

    Get Citation

    Copy Citation Text

    Mingzhe Wei, Junyu Liu, Min Guo, Huafeng Liu. Polarized Fluorescence Microscopy and Recent Progress (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Nov. 30, 2023

    Accepted: Jan. 15, 2024

    Published Online: Mar. 18, 2024

    The Author Email: Guo Min (guom@zju.edu.cn), Liu Huafeng (liuhf@zju.edu.cn)

    DOI:10.3788/LOP232597

    Topics