Acta Optica Sinica, Volume. 45, Issue 6, 0628008(2025)

Dense Hybrid Attention Network for Remote Sensing Building Change Detection

Qinglin Tian1,*... Donghua Lu1, Yao Li2 and Chengkai Pei1 |Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, Beijing Research Institute of Uranium Geology, Beijing 100029, China
  • 2School of Geographical Sciences, Southwest University, Chongqing 400715, China
  • show less
    Figures & Tables(13)
    Overview architecture of proposed DHANet
    Convolutional block attention module
    Diagrams of traditional convolution and dilated convolution. (a) Traditional convolution; (b) dilated convolution
    Multi-scale features aggregation module
    Hybrid attention module
    Interlaced sparse self-attention module
    Data sets. (a) LEVIR-CD; (b) WHU-CD
    Qualitative results on LEVIR-CD dataset
    Qualitative results on WHU-CD dataset
    • Table 1. Quantitative results on LEVIR-CD dataset

      View table

      Table 1. Quantitative results on LEVIR-CD dataset

      MethodP /%R /%F1 /%IoU /%
      FC-EF86.9180.1783.4071.53
      FC-Siam-Conc91.9976.7783.6971.96
      FC-Siam-Diff89.5383.3186.3175.92
      STANet83.8191.0087.2677.40
      IFN93.0286.3389.5581.08
      BIT91.8988.4890.1582.07
      DHANet92.0290.0891.0483.55
    • Table 2. Quantitative results on WHU-CD dataset

      View table

      Table 2. Quantitative results on WHU-CD dataset

      MethodP /%R /%F1 /%IoU /%
      FC-EF86.4471.2478.1164.08
      FC-Siam-Conc87.5575.1080.8567.85
      FC-Siam-Diff86.4076.6481.2368.39
      STANet75.7089.8582.1769.74
      IFN91.6582.9487.0877.11
      BIT89.6585.0487.2877.44
      DHANet90.8687.9189.3680.77
    • Table 3. Quantitative results of ablation experiments

      View table

      Table 3. Quantitative results of ablation experiments

      DCMSAHAMP /%R /%F1 /%IoU /%
      ×××89.8387.6488.7279.73
      ×90.6289.0989.8581.57
      ×90.5589.2589.9081.65
      ×91.8389.3790.5882.79
      92.0290.0891.0483.55
    • Table 4. Comparisons of complexity on LEVIR-CD dataset

      View table

      Table 4. Comparisons of complexity on LEVIR-CD dataset

      MethodParams /MFLOPs /GF1 /%
      FC-EF1.352.9283.40
      FC-Siam-Conc1.544.5583.69
      FC-Siam-Diff1.353.9986.31
      STANet23.3223.8487.26
      IFN50.7182.2689.55
      BIT3.5510.6090.15
      DHANet21.6532.2691.04
    Tools

    Get Citation

    Copy Citation Text

    Qinglin Tian, Donghua Lu, Yao Li, Chengkai Pei. Dense Hybrid Attention Network for Remote Sensing Building Change Detection[J]. Acta Optica Sinica, 2025, 45(6): 0628008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Aug. 16, 2024

    Accepted: Sep. 30, 2024

    Published Online: Mar. 17, 2025

    The Author Email: Tian Qinglin (736924158@qq.com)

    DOI:10.3788/AOS241436

    Topics