Journal of Inorganic Materials, Volume. 37, Issue 5, 554(2022)
Metal nanomaterials as mimic enzyme have been widely used for biosensor and catalysis due to their high stability and low cost. Here, [1-methyl-3-ethylimidazole][dicyandiamide] ionic liquid ([EMIM][DCA]) reacted with ruthenium chloride to form [EMIM]3[Ru(DCA)6] ionic liquid. Silk was dissolved in the above ionic liquid and then carbonized at high temperature to obtain Ru-biomass carbon composite. The results show that Ru-biomass carbon offers excellent dispersion, small Ru nanoparticles with an average diameter of 7.5 nm which were uniformly dispersed on the surface of carbon sheets, and high oxidase-like activity. Based on the inhibition of chlorpyrifos on catalytic activity of Ru-biomass carbon, a method was established for colorimetric determination of chlorpyrifos. Chlorpyrifos obviously inhibits the catalytic activity of Ru-biochar carbon, leading to a reduced absorbance of blue product. When the concentration of chlorpyrifos was in the range from 10 to 80 ng/mL, the peak absorbance decreases linearly with the increase of chlorpyrifos concentration, giving a detection limit of about 6.5 ng/mL. The as-proposed method provides higher sensitivity and stability compared with present methods, and has successfully applied to detection of chlorpyrifos in peach samples.
Get Citation
Copy Citation Text
Zhijun CAO, Zaijun LI.
Category: RESEARCH ARTICLE
Received: Jun. 6, 2021
Accepted: --
Published Online: Jan. 10, 2023
The Author Email: LI Zaijun (zaijunli@jiangnan.edu.cn)