Journal of the Chinese Ceramic Society, Volume. 53, Issue 3, 630(2025)

Effect of Configuration Entropy on Resistance of Rare-earth Zirconate Ceramics to CaO-MgO-Al2O3-SiO2

WANG Xiaobo1...2, HE Zhiyong2, YANG Xiao3,*, WANG Feng2, LI Jiangtao3, and ZHANG Qifu12 |Show fewer author(s)
Author Affiliations
  • 1Central Iron and Steel Research Institute Group,Beijing 100081
  • 2China Iron & Steel Research Institute Group, Beijing 100081
  • 3Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
  • show less
    References(52)

    [1] [1] LAKIZA S M, GRECHANYUK M I, RUBAN O K, et al. Thermal barrier coatings: Current status, search, and analysis[J]. Powder Metall Met Ceram, 2018, 57(1): 82-113.

    [2] [2] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284.

    [5] [5] MILLER R A. Thermal barrier coatings for aircraft engines: History and directions[J]. J Therm Spray Technol, 1997, 6(1): 35-42.

    [6] [6] CURRY N, MARKOCSAN N, LI X H, et al. Next generation thermal barrier coatings for the gas turbine industry[J]. J Therm Spray Technol, 2011, 20(1): 108-115.

    [7] [7] WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J]. J Adv Ceram, 2022, 11(7): 985-1068.

    [8] [8] FEUERSTEIN A, KNAPP J, TAYLOR T, et al. Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: A review[J]. J Therm Spray Technol, 2008, 17(2): 199-213.

    [9] [9] CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annu Rev Mater Res, 2003, 33: 383-417.

    [10] [10] LIU Z G, ZHANG W H, OUYANG J H, et al. Novel double-ceramic-layer (La0.8Eu0.2)2Zr2O7/YSZ thermal barrier coatings deposited by plasma spraying[J]. Ceram Int, 2014, 40(7): 11277-11282.

    [11] [11] LIU Z G, ZHANG W H, OUYANG J H, et al. Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying[J]. J Alloys Compd, 2015, 647: 438-444.

    [13] [13] ZHANG Y A, GAO W, DOU M F, et al. Highly-durable plasma-sprayed Al2O3-YSZ/YSZ double ceramic layer TBCs against CMAS corrosion[J]. J Eur Ceram Soc, 2024, 44(12): 7328-7338.

    [14] [14] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nat Mater, 2016, 15(8): 804-809.

    [15] [15] DREXLER J M, GLEDHILL A D, SHINODA K, et al. Jet engine coatings for resisting volcanic ash damage[J]. Adv Mater, 2011, 23(21): 2419-2424.

    [16] [16] VIDAL-STIF M H, RIO C, BOIVIN D, et al. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS[J]. Surf Coat Technol, 2014, 239: 41-48.

    [17] [17] WOLF M, MACK D E, GUILLON O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): A comparative study[J]. J Am Ceram Soc, 2020, 103(12): 7056-7071.

    [18] [18] REN K, WANG Q K, SHAO G, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating[J]. Scr Mater, 2020, 178: 382-386.

    [19] [19] LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J]. J Adv Ceram, 2019, 8(4): 576-582.

    [20] [20] CONG L K, ZHANG S Y, GU S Y, et al. Thermophysical properties of a novel high entropy hafnate ceramic[J]. J Mater Sci Technol, 2021, 85: 152-157.

    [21] [21] YE F X, MENG F W, LUO T Y, et al. The CMAS corrosion behavior of high-entropy (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 hafnate material prepared by ultrafast high-temperature sintering (UHS)[J]. J Eur Ceram Soc, 2023, 43(5): 2185-2195.

    [22] [22] LI L Z, SUN J B, LI C G, et al. CMAS resistance characteristics of multi-components rare earth phosphate materials at 1250 ℃ and 1350 ℃[J]. Ceram Int, 2023, 49(23): 39369-39383.

    [23] [23] HAN J, WANG Y F, LIU R J, et al. Theoretical and experimental investigation of Xenotime-type rare earth phosphate REPO4, (RE = Lu, Yb, Er, Y and Sc) for potential environmental barrier coating applications[J]. Sci Rep, 2020, 10: 13681.

    [24] [24] DREXLER J M, ORTIZ A L, PADTURE N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass[J]. Acta Mater, 2012, 60(15): 5437-5447.

    [25] [25] LIU Z, SHEN Z Y, LIU G X, et al. Sm-doped Gd2Zr2O7 thermal barrier coatings: Thermal expansion coefficient, structure and failure[J]. Vacuum, 2021, 190: 110314.

    [26] [26] DENG S X, HE G, YANG Z C, et al. Calcium-magnesium- alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings[J]. J Mater Sci Technol, 2022, 107: 259-265.

    [27] [27] STEINBERG L, MIKULLA C, NARAPARAJU R, et al. Erosion behavior of CMAS/VA infiltrated EB-PVD Gd2Zr2O7 TBCs: Special emphasis on the effect of mechanical properties of the reaction products[J]. Wear, 2022, 506: 204450.

    [28] [28] ZHOU L, LI F, LIU J X, et al. High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying[J]. J Eur Ceram Soc, 2020, 40(15): 5731-5739.

    [29] [29] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299-303.

    [30] [30] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci Eng A, 2004, 375: 213-218.

    [31] [31] WRIGHT A J, WANG Q Y, HUANG C Y, et al. From high-entropy ceramics to compositionally-complex ceramics: A case study of fluorite oxides[J]. J Eur Ceram Soc, 2020, 40(5): 2120-2129.

    [32] [32] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.

    [33] [33] AKRAMI S, EDALATI P, FUJI M, et al. High-entropy ceramics: Review of principles, production and applications[J]. Mater Sci Eng R Rep, 2021, 146: 100644.

    [34] [34] ANANDKUMAR M, TROFIMOV E. Synthesis, properties, and applications of high-entropy oxide ceramics: Current progress and future perspectives[J]. J Alloys Compd, 2023, 960: 170690.

    [35] [35] SARKAR A, BREITUNG B, HAHN H. High entropy oxides: The role of entropy, enthalpy and synergy[J]. Scr Mater, 2020, 187: 43-48.

    [36] [36] CLARKE D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings[J]. Surf Coat Technol, 2003, 163: 67-74.

    [37] [37] CHE J W, WANG X Z, LIU X Y, et al. Thermal transport property in pyrochlore-type and fluorite-type A2B2O7 oxides by molecular dynamics simulation[J]. Int J Heat Mass Transf, 2022, 182: 122038.

    [38] [38] TIAN Y, ZHAO X Y, SUN Z P, et al. Improved thermal properties and CMAS corrosion resistance of high-entropy RE zirconates by tuning fluorite-pyrochlore structure[J]. Ceram Int, 2024, 50(11): 19182-19193.

    [39] [39] KRMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. J Am Ceram Soc, 2006, 89(10): 3167-3175.

    [40] [40] WANG Y H, JIN Y J, WEI T, et al. Size disorder: A descriptor for predicting the single- or dual-phase formation in multi-component rare earth zirconates[J]. J Alloys Compd, 2022, 918: 165636.

    [41] [41] YAN R X, LIANG W P, MIAO Q, et al. Mechanical, thermal and CMAS resistance properties of high-entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 ceramics[J]. Ceram Int, 2023, 49(12): 20729-20741.

    [42] [42] SUBRAMANIAN M A, ARAVAMDAN G, RAO G. Oxide pyrochlores—a review[J]. Prog Solid State Chem, 1983, 15: 55-143.

    [43] [43] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr Sect A, 1976, 32(5): 751-767.

    [44] [44] ZHOU M, ZHANG H, YANG G J, et al. Reaction mechanisms of (RE0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (RE = La or Yb) under CaO-MgO-Al2O3-SiO2 (CMAS) attack[J]. J Eur Ceram Soc, 2024, 44(6): 4055-4063.

    [45] [45] BALL J A J, MARTINS J F, BREWSTER G, et al. An investigation into RESZ (RE = Yb, Er, Gd, Sm) materials for CMAS resistance in thermal barrier coatings[J]. J Eur Ceram Soc, 2024, 44(6): 3734-3746.

    [46] [46] QUINTAS A CAURANT D MAJRUS O DUSSOSSOY J-L CHARPENTIER T. Effect of changing the rare earth cation type on the structure and crystallisation behaviour of an aluminoborosilicate glass[J]. 2008, 49(4): 192-197.

    [47] [47] DUFFY J A, INGRAM M D. An interpretation of glass chemistry in terms of the optical basicity concept[J]. J Non Cryst Solids, 1976, 21(3): 373-410.

    [48] [48] NANBA T, MIURA Y, SAKIDA S. Consideration on the correlation between basicity of oxide glasses and O1s chemical shift in XPS[J]. J Ceram Soc Japan, 2005, 113(1313): 44-50.

    [49] [49] DUFFY J A. Acid-base reactions of transition metal oxides in the solid state[J]. J Am Ceram Soc, 1997, 80(6): 1416-1420.

    [50] [50] TURCER L R, KRAUSE A R, GARCES H F, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, -Yb2Si2O7 and -Sc2Si2O7[J]. J Eur Ceram Soc, 2018, 38(11): 3914-3924.

    [51] [51] KRAUSE A R, GARCES H F, SENTURK B S, et al. 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: Part II, interactions with sand and fly ash[J]. J Am Ceram Soc, 2014, 97(12): 3950-3957.

    [52] [52] DUFFY J. Optical basicity analysis of glasses containing trivalent scandium, yttrium, gallium and indium[J]. Phys Chem Glasses, 2005, 46: 500-504.

    [53] [53] DUFFY J A. Polarisability and polarising power of rare earth ions in glass: An optical basicity assessment[J]. Phys Chem Glasses, 2005, 46(1): 1-6.

    [54] [54] ZHAO X Y, WANG X L, LIN H, et al. Electronic polarizability and optical basicity of lanthanide oxides[J]. Phys B Condens Matter, 2007, 392(1-2): 132-136.

    [55] [55] Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides[J]. J Appl Phys, 1996, 79(3): 1736-1740.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xiaobo, HE Zhiyong, YANG Xiao, WANG Feng, LI Jiangtao, ZHANG Qifu. Effect of Configuration Entropy on Resistance of Rare-earth Zirconate Ceramics to CaO-MgO-Al2O3-SiO2[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 630

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 11, 2024

    Accepted: Mar. 10, 2025

    Published Online: Mar. 10, 2025

    The Author Email: Xiao YANG (yangxiao@mail.ipc.ac)

    DOI:10.14062/j.issn.0454-5648.20240647

    Topics