Acta Optica Sinica, Volume. 41, Issue 21, 2100001(2021)

Development of Microlens Arrays: From Fabrication to Photonic Applications

Jianjun Li1, Chunyan Chu1, Weitong Lu2, Pingping Zhang2, Gaoling Yang1,2, Haizheng Zhong2,3、*, and Yuejin Zhao1、**
Author Affiliations
  • 1Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China;
  • 3Shenzhen Research Institute, Beijing Institute of Technology, Shenzhen 518057, China
  • show less
    References(210)

    [1] Nishizawa K, Oikawa M. Micro-optics research activities in Japan[J]. Proceedings of SPIE, 1751, 54-65(1993).

    [2] Borrelli N F. Microoptics technology[M]. 2nd ed. New York: Marcel Dekker, 11-22(2005).

    [3] Jahns J, Cox J A, Moharam M G. Diffractive optics and micro-optics: introduction to the feature issue[J]. Applied Optics, 36, 4633(1997).

    [4] Suleski T J. Kolste R D T. Fabrication trends for free-space microoptics[J]. Journal of Lightwave Technology, 23, 633(2005).

    [5] Schreiber P, Dannberg P, Hoefer B et al. Chirped microlens arrays for diode laser circularization and beam expansion[J]. Proceedings of SPIE, 5876, 58760K(2005).

    [6] Arai J, Kawai H, Okano F. Microlens arrays for integral imaging system[J]. Applied Optics, 45, 9066-9078(2006).

    [8] Rossi M, Kunz R E, Herzig H P. Refractive and diffractive properties of planar micro-optical elements[J]. Applied Optics, 34, 5996-6007(1995).

    [9] Du C L, Chen B, Qiu C K et al. Microlens array and application systems[J]. Proceedings of SPIE, 4231, 153-157(2000).

    [10] Hou T, Zheng C, Bai S et al. Fabrication, characterization, and applications of microlenses[J]. Applied Optics, 54, 7366-7376(2015).

    [11] Yuan W, Li L H, Lee W B et al. Fabrication of microlens array and its application: a review[J]. Chinese Journal of Mechanical Engineering, 31, 1-9(2018).

    [12] Liu F, Zhang F, Bian H et al. Development and preparation of refractive infrared microlens array device[J]. Laser & Optoelectronics Progress, 57, 071607(2020).

    [13] Yang X, Sun H L, Yue D M et al. Research progress of femtosecond laser fabrication of microlens array[J]. Laser & Optoelectronics Progress, 58, 0500005(2021).

    [14] Zhu L, Zhang Y L, Sun H B. Miniaturising artificial compound eyes based on advanced micronanofabrication techniques[J]. Light: Advanced Manufacturing, 7, 1-17(2021).

    [15] Tang X G, Tong W, Lu R G et al. Recent development in tunable liquid crystal microlens[J]. Laser & Optoelectronics Progress, 49, 040002(2012).

    [16] Wang J G. Research progress of liquid crystal microlens array[J]. Laser & Optoelectronics Progress, 50, 010005(2013).

    [17] Zhou T F, Xie J Q, Liang Z Q et al. Advances and prospects of molding for optical microlens array[J]. Chinese Optics, 10, 603-618, 703(2017).

    [18] Zhu L, Gao Y Y, Hu X Y et al. Progress in femtosecond laser fabrication of artificial compound eye[J]. Chinese Science Bulletin, 64, 1254-1267(2019).

    [19] Wang W H, Qi L M. Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices[J]. Advanced Functional Materials, 29, 1807275(2019).

    [20] Land M F. Visual acuity in insects[J]. Annual Review of Entomology, 42, 147-177(1997).

    [21] Horridge G A. The separation of visual axes in apposition compound eyes[J]. Philosophical Transactions of the Royal Society B, 285, 1-59(1978).

    [22] Land M F. The optics of animal eyes[J]. Contemporary Physics, 29, 435-455(1988).

    [23] Land M F. Variations in the structure and design of compound eyes[M]. ∥Stavenga D G, Hardie R C. Facets of vision. Heidelberg: Springer, 90-111(1989).

    [24] Lippmann G. Épreuves réversibles donnant la sensation du relief[J]. Journal De Physique Théorique et Appliquée, 7, 821-825(1908).

    [25] Wang B. Research the application of microlens array in the LED light source[D]. Nanchang: Nanchang Hangkong University, 21-25(2013).

    [26] Hutley M C, Savander P, Schrader M. The use of microlenses for making spatially variant optical interconnections[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 1, 337-346(1992).

    [27] Hu W H, Li X J, Yang J K et al. Crosstalk analysis of aligned and misaligned free-space optical interconnect systems[J]. Journal of the Optical Society of America A, 27, 200-205(2010).

    [28] Song W, Liu H H, Pang F F et al. Excitation of high-order optical vortex modes by tilting tapered and lensed single mode fiber[J]. Chinese Journal of Lasers, 46, 0906001(2019).

    [29] Liu Z Y, Liu H, Lu Z F et al. A beam homogenizer for digital micromirror device lithography system based on random freeform microlenses[J]. Optics Communications, 443, 211-215(2019).

    [31] Anderson R H. Close-up imaging of documents and displays with lens arrays[J]. Applied Optics, 18, 477-484(1979).

    [32] Oikawa M, Iga K. Distributed-index planar microlens[J]. Applied Optics, 21, 1052-1056(1982).

    [34] Deguchi M, Maruyama T, Yamasaki F et al. Microlens design using simulation program for CCD image sensor[J]. IEEE Transactions on Consumer Electronics, 38, 583-589(1992).

    [35] van Berkel C, McGarvey B P, Clarke J A. Microlens arrays for 2D large area image sensors[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 3, 177-182(1994).

    [36] Grunwald R, Woggon S, Ehlert R et al. Thin-film microlens arrays with non-spherical elements[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 6, 663-671(1997).

    [38] Kobayashi M, Fujita K, Kaneko T et al. Second-harmonic-generation microscope with a microlens array scanner[J]. Optics Letters, 27, 1324-1326(2002).

    [39] Chen S H, Pan F, Fu X C et al. Fabrication of flexible optical sensor based on MOEMS process[J]. Semiconductor Optoelectronics, 26, 64-66(2005).

    [40] Jeong K H, Kim J, Lee L P. Biologically inspired artificial compound eyes[J]. Science, 312, 557-561(2006).

    [41] Wu C X, Quan H, Lin T Y, manufacturing method thereof: CN1834696A[P] et al. -03-29(2006).

    [42] Du C L, Dong X C, Liu Q et al. -06-29(2011).

    [43] Liu X G, Huo F R, Xue C X. Parameter optimization and error compensation of diffraction microlens injection molding process[J]. Laser & Optoelectronics Progress, 57, 052204(2020).

    [44] Yang G G[M]. Micro-optics and system(2008).

    [45] Xu Q. Research on array optics and microlens array technology[D]. Hangzhou: Zhejiang University(1997).

    [46] Syms R R A, Yeatman E M, Bright V M et al. Surface tension-powered self-assembly of microstructures: the state-of-the-art[J]. Journal of Microelectromechanical Systems, 12, 387-417(2003).

    [47] Moore S, Gomez J, Lek D et al. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique[J]. Microelectronic Engineering, 162, 57-62(2016).

    [48] Yang H, Chao C K, Wei M K et al. High fill-factor microlens array mold insert fabrication using a thermal reflow process[J]. Journal of Micromechanics and Microengineering, 14, 1197-1204(2004).

    [49] Surdo S, Diaspro A, Duocastella M. Microlens fabrication by replica molding of frozen laser-printed droplets[J]. Applied Surface Science, 418, 554-558(2017).

    [50] Wang L, Luo Y, Liu Z Z et al. Fabrication of microlens array with controllable high NA and tailored optical characteristics using confined ink-jetting[J]. Applied Surface Science, 442, 417-422(2018).

    [51] MacFarlane D L, Narayan V, Tatum J A et al. Microjet fabrication of microlens arrays[J]. IEEE Photonics Technology Letters, 6, 1112-1114(1994).

    [52] Biehl S, Danzebrink R, Oliveira P et al. Refractive microlens fabrication by ink-jet process[J]. Journal of Sol-Gel Science and Technology, 13, 177-182(1998).

    [53] Bardinal V, Daran E, Leïchlé T et al. Fabrication and characterization of microlens arrays using a cantilever-based spotter[J]. Optics Express, 15, 6900-6907(2007).

    [54] Vilmi P, Myllylä R, Fabritius T. Inkjet printed microlens array on patterned substrate[J]. Proceedings of SPIE, 8613, 861317(2013).

    [55] Luo Y, Wang L, Ding Y C et al. Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface[J]. Applied Surface Science, 279, 36-40(2013).

    [57] Zhu X Y, Zhu L, Chen H J et al. Fabrication of multi-scale micro-lens arrays on hydrophobic surfaces using a drop-on-demand droplet generator[J]. Optics & Laser Technology, 66, 156-165(2015).

    [58] Xia Z H, Li Y, Su X Y et al. Fabrication of polymer compound microlens by lens-on-lens microstructures[J]. Current Applied Physics, 17, 110-114(2017).

    [59] Parry E, Bolis S, Elston S J et al. Drop-on-demand inkjet printing of thermally tunable liquid crystal microlenses[J]. Advanced Engineering Materials, 20, 1700774(2018).

    [60] Kamal W, Lin J D, Elston S J et al. Electrically tunable printed bifocal liquid crystal microlens arrays[J]. Advanced Materials Interfaces, 7, 2000578(2020).

    [61] Yuan C, Kowsari K, Panjwani S et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing[J]. ACS Applied Materials & Interfaces, 11, 40662-40668(2019).

    [62] Zhu X Y, Li Z H, Hu Y J et al. Facile fabrication of defogging microlens arrays using electric field-driven jet printing[J]. Optics & Laser Technology, 123, 105943(2020).

    [63] Zhou P L, Yu H B, Zhong Y et al. Fabrication of waterproof artificial compound eyes with variable field of view based on the bioinspiration from natural hierarchical micro-nanostructures[J]. Nano-Micro Letters, 12, 1-16(2020).

    [64] Li H Y, Duan Y Q, Shao Z L et al. Morphology-programmable self-aligned microlens array for light extraction via electrohydrodynamic printing[J]. Organic Electronics, 87, 105969(2020).

    [65] Zhang H Y, Zhang N, Han W et al. Precision replication of microlens arrays using variotherm-assisted microinjection moulding[J]. Precision Engineering, 67, 248-261(2021).

    [66] Du Z H, Yu X H, Han Y C. Inkjet printing of viscoelastic polymer inks[J]. Chinese Chemical Letters, 29, 399-404(2018).

    [67] Jung H, Jeong K H. Monolithic polymer microlens arrays with high numerical aperture and high packing density[J]. ACS Applied Materials & Interfaces, 7, 2160-2165(2015).

    [68] Feng W Q, Li L X, Du X et al. Single-step fabrication of high-density microdroplet arrays of low-surface-tension liquids[J]. Advanced Materials, 28, 3202-3208(2016).

    [69] Mihailov S, Lazare S. Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon[J]. Applied Optics, 32, 6211-6218(1993).

    [70] Wang M R, Su H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication[J]. Applied Optics, 37, 7568-7576(1998).

    [71] Lin C H, Jiang L, Chai Y H et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 97, 751-757(2009).

    [72] Chen F, Liu H W, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 18, 20334-20343(2010).

    [73] Chen F, Yang Q, Qu P B et al. -10-31(2012).

    [74] Yong J L, Chen F, Yang Q et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser[J]. ACS Applied Materials & Interfaces, 5, 9382-9385(2013).

    [75] Florian C, Piazza S, Diaspro A et al. Direct laser printing of tailored polymeric microlenses[J]. ACS Applied Materials & Interfaces, 8, 17028-17032(2016).

    [76] Kadan V, Blonskyi I, Shynkarenko Y et al. Single-pulse femtosecond laser fabrication of concave microlens- and micromirror arrays in chalcohalide glass[J]. Optics & Laser Technology, 96, 283-289(2017).

    [77] Luo Z, Duan J A, Guo C L. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica[J]. Optics Letters, 42, 2358-2361(2017).

    [78] Fan H, Cao X W, Wang L et al. Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse[J]. Optics Letters, 44, 5149-5152(2019).

    [79] Ou Y, Li S, Qian J W et al. Fabrication of large-area microwells on polydimethylsiloxane films by femtosecond laser ablation[J]. Optics & Laser Technology, 130, 106330(2020).

    [80] Schmidt T, Conrad D[J]. Micro lens arrays made by CO2-laser radiation Proceedings of SPIE, 11478, 1147806.

    [81] Huang Y, Qin Y L, Tu P et al. High fill factor microlens array fabrication using direct laser writing and its application in wavefront detection[J]. Optics Letters, 45, 4460-4463(2020).

    [82] Zollman P M, Pollard B T, Birch A D. Method. -07-31[P]. apparatus for preparing a screen printing screen: US4944826.(1990).

    [83] Blumenthal T, Meruga J, Stanley May P et al. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications[J]. Nanotechnology, 23, 185305(2012).

    [84] Zhou X T, Guo T L, Zhang Y A et al. -05-11(2016).

    [85] Zhou X T, Peng Y Y, Peng R et al. Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display[J]. ACS Applied Materials & Interfaces, 8, 24248-24255(2016).

    [86] Wang W W, Chen G X, Weng Y L et al. Large-scale microlens arrays on flexible substrate with improved numerical aperture for curved integral imaging 3D display[J]. Scientific Reports, 10, 11741(2020).

    [87] Marcinkevi Ius A, Juodkazis S, Watanabe M et al. Femtosecond laser-assisted three-dimensional microfabrication in silica[J]. Optics Letters, 26, 277-279(2001).

    [88] He S G, Chen F, Liu K Y et al. Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica[J]. Optics Letters, 37, 3825-3827(2012).

    [89] [89] YaoJ, CuiZ, Gao FH, et al., 2001, 57/58: 729- 735.

    [90] Wu M H, Park C, Whitesides G M. Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography[J]. Langmuir, 18, 9312-9318(2002).

    [91] Zhu J H, Jin C W, Duan X Y et al. One-step fabrication of achromatic spherical microlens array on enzyme etched gelatin film[J]. Microelectronic Engineering, 86, 1096-1098(2009).

    [92] Wu C Y, Chiang T H, Lai N D et al. Fabrication of microlens arrays based on the mass transport effect of SU-8 photoresist using a multiexposure two-beam interference technique[J]. Applied Optics, 48, 2473-2479(2009).

    [94] Kang J M, Wei M K, Lin H Y et al. Shape-controlled microlens arrays fabricated by diffuser lithography[J]. Microelectronic Engineering, 87, 1420-1423(2010).

    [95] Reig B, Bardinal V, Camps T et al. Polymer tunable microlens arrays suitable for VCSEL beam control[J]. Proceedings of SPIE, 8428, 84280N(2012).

    [96] Wang L L, Jiang W T, Liu H Z et al. Adjusting light distribution for generating microlens arrays with a controllable profile and fill factor[J]. Journal of Micromechanics and Microengineering, 24, 125012(2014).

    [97] Bian R, Xiong Y, Chen X Y et al. Ultralong focal length microlens array fabricated based on SU-8 photoresist[J]. Applied Optics, 54, 5088-5093(2015).

    [98] Deng Z F, Yang Q, Chen F et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 40, 1928-1931(2015).

    [99] Huang S Z, Li M J, Shen L G et al. A simple method for shape modulation in microlens array fabrication via spin-coating process[J]. Microsystem Technologies, 24, 1885-1889(2018).

    [100] Liu X Q, Yu L, Yang S N et al. Optical nanofabrication of concave microlens arrays[J]. Laser & Photonics Reviews, 13, 1800272(2019).

    [101] Zhou X J, Song A G, Wang S et al. Fabrication of refractive silicon microlens array with a large focal number and accurate lens profile[J]. Microsystem Technologies, 26, 1159-1166(2020).

    [102] Liu M N, Yang H, Sun H B. Concave microlens arrays through an etching-assisted laser seeding method[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 50, 20-27(2020).

    [103] Li Z B, Lu H B, Ding Y S et al. Low voltage liquid crystal microlens array based on polyvinyl alcohol convex induced vertical alignment[J]. Liquid Crystals, 48, 248-254(2021).

    [104] Li Z B, Xu M, Lu H B et al. A polyvinyl alcohol microlens array with controlled curvature on discontinuous hydrophobic surface[J]. Journal of Molecular Liquids, 319, 114372(2020).

    [105] Hu C N, Hsieh H T. Su G D J. Fabrication of microlens arrays by a rolling process with soft polydimethylsiloxane molds[J]. Journal of Micromechanics and Microengineering, 21, 065013(2011).

    [106] Lazare S, Lopez J, Turlet J M et al. Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion[J]. Applied Optics, 35, 4471-4475(1996).

    [107] Okamoto T, Mori M W, Karasawa T et al. Ultraviolet-cured polymer microlens arrays[J]. Applied Optics, 38, 2991-2996(1999).

    [108] Chandross E A, Kroupenkine T N. -08-30[P]. Yang S. Solidifiable tunable liquid microlens: US6936196.(2005).

    [109] Chang C Y, Yang S Y, Chu M H. Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process[J]. Microelectronic Engineering, 84, 355-361(2007).

    [110] Zeng X F, Jiang H R. Polydimethylsiloxane microlens arrays fabricated through liquid-phase photopolymerization and molding[J]. Journal of Microelectromechanical Systems, 17, 1210-1217(2008).

    [111] Soppera O, Jradi S, Lougnot D J. Fabrication of microlenses and optical waveguides by self-guiding photopolymerization[J]. Proceedings of SPIE, 7716, 771608(2010).

    [113] Kang D, Pang C, Kim S M et al. Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets[J]. Advanced Materials, 24, 1709-1715(2012).

    [115] Dai H T, Chen L, Zhang B et al. Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation[J]. Optics Letters, 40, 2723-2726(2015).

    [116] Zhang D W, Xu Q, Fang C L et al. Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes[J]. ACS Applied Materials & Interfaces, 9, 16604-16609(2017).

    [117] Eisenberg N P, Klebanov M, Lyubin V et al. Infrared microlens arrays based on chalcogenide photoresist, fabricated by thermal reflow process[J]. Journal of Optoelectronics and Advanced Materials, 2, 147-152(2000).

    [118] Huang S Z, Li M J, Shen L G et al. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow[J]. Optics & Laser Technology, 100, 298-303(2018).

    [119] Lin C P, Yang H, Chao C K. Hexagonal microlens array modeling and fabrication using a thermal reflow process[J]. Journal of Micromechanics and Microengineering, 13, 775-781(2003).

    [120] He M, Yuan X C, Bu J. Sample-inverted reflow technique for fabrication of a revolved-hyperboloid microlens array in hybrid solgel glass[J]. Optics Letters, 29, 2004-2006(2004).

    [121] Hsieh H T. Su G D J. A fabrication technique for microlens array with high fill-factor and small radius of curvature[J]. Proceedings of SPIE, 6883, 68830Z(2008).

    [122] Cherng Y S. Su G D J. Fabrication of gapless microlenses on spherical surface by multi-replication process[J]. Proceedings of SPIE, 8841, 88410U(2013).

    [123] Wang M, Yu W, Wang T et al. A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number[J]. RSC Advances, 5, 35311-35316(2015).

    [124] Huang S Z, Li M J, Shen L G et al. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures[J]. Optics Communications, 393, 213-218(2017).

    [125] Qiu J F, Li M J, Zhu J J et al. Fabrication of microlens array with well-defined shape by spatially constrained thermal reflow[J]. Journal of Micromechanics and Microengineering, 28, 085015(2018).

    [126] Qiu J F, Li M J, Ye H C et al. Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow[J]. Applied Optics, 57, 7296-7302(2018).

    [127] Zhu J J, Li M J, Qiu J F et al. Fabrication of high fill-factor aspheric microlens array by dose-modulated lithography and low temperature thermal reflow[J]. Microsystem Technologies, 25, 1235-1241(2019).

    [128] Wang Y Y, Shi C Y, Liu C Y et al. Fabrication and characterization of a polymeric curved compound eye[J]. Journal of Micromechanics and Microengineering, 29, 055008(2019).

    [129] Toshiyoshi H. Su G D J, LaCosse J, et al. A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process[J]. Journal of Lightwave Technology, 21, 1700-1708(2003).

    [130] Guo Z J[J]. Chemical vapor deposition technology and material preparation Low Carbon World, 2017, 288-289.

    [131] Kubo M, Hanabusa M. Fabrication of microlenses by laser chemical vapor deposition[J]. Applied Optics, 29, 2755-2759(1990).

    [132] Wang Q Y, Zhang Y S, Gao D S. Theoretical study on the fabrication of a microlens using the excimer laser chemical vapor deposition technique[J]. Thin Solid Films, 287, 243-246(1996).

    [133] Watanabe K, Morita T, Kometani R et al. Nanoimprint using three-dimensional microlens mold made by focused-ion-beam chemical vapor deposition[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 22, 22-26(2004).

    [134] Lin H C, Liu H H, Lee G Y et al. Effects of lens shape on GaN grown on microlens patterned sapphire substrates by metallorganic chemical vapor deposition[J]. Journal of the Electrochemical Society, 157, H304-H307(2010).

    [135] Zuo H J, Choi D Y, Gai X et al. CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition[J]. Optics Express, 25, 3069-3076(2017).

    [136] Yan J W, Zhang Z Y, Kuriyagawa T et al. Fabricating micro-structured surface by using single-crystalline diamond endmill[J]. The International Journal of Advanced Manufacturing Technology, 51, 957-964(2010).

    [137] McCall B, Tkaczyk T S. Rapid fabrication of miniature lens arrays by four-axis single point diamond machining[J]. Optics Express, 21, 3557-3572(2013).

    [138] Chen C C, Huang C Y, Cheng Y C et al. Ultra-precision diamond milling of aspheric microlens array[J]. Proceedings of SPIE, 8769, 87693Q(2013).

    [139] Yi A Y, Li L. Design and fabrication of a microlens array by use of a slow tool servo[J]. Optics Letters, 30, 1707-1709(2005).

    [140] Huang C N, Li L, Yi A Y. Design and fabrication of a micro Alvarez lens array with a variable focal length[J]. Microsystem Technologies, 15, 559-563(2009).

    [141] Li L K, He P, Wang F et al. A hybrid polymer-glass achromatic microlens array fabricated by compression molding[J]. Journal of Optics, 13, 055407(2011).

    [142] Zhou W C, Zhang L, Yi A Y. Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays[J]. Optik, 171, 294-303(2018).

    [143] Zhu Z W, To S, Zhang S J. Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining[J]. Optics Express, 23, 20593-20604(2015).

    [144] Zhang L, Zhou L Y, Zhou W C et al. Design, fabrication and testing of a compact large-field-of-view infrared compound eye imaging system by precision glass molding[J]. Precision Engineering, 66, 87-98(2020).

    [145] Zhang L, Yi A Y. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing[J]. Applied Optics, 59, 6945-6952(2020).

    [146] Liu X H, Zhou T F, Zhang L et al. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding[J]. Journal of Micromechanics and Microengineering, 28, 075008(2018).

    [147] Liu X H, Zhou T F, Zhang L et al. 3D fabrication of spherical microlens arrays on concave and convex silica surfaces[J]. Microsystem Technologies, 25, 361-370(2019).

    [148] Liu X H, Zhou T F, Zhou W C et al. Modeling and experiment of concave microlens array on silicon wafer by grinding-polishing process with diamond slurry[J]. Proceedings of SPIE, 11383, 1138309(2020).

    [149] Chang C Y, Yang S Y, Huang L S et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Physics & Technology, 48, 163-173(2006).

    [150] Chang C Y, Yang S Y, Sheh J L. A roller embossing process for rapid fabrication of microlens arrays on glass substrates[J]. Microsystem Technologies, 12, 754-759(2006).

    [151] Huang P H, Huang T C, Sun Y T et al. Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing[J]. Optics Express, 16, 3041-3048(2008).

    [152] Hocheng H, Wen T T, Yang S Y. Replication of microlens arrays by gas-assisted hot embossing[J]. Materials and Manufacturing Processes, 23, 261-268(2008).

    [153] Huang P H, Yang S Y. Complete reversal imprinting for fabricating microlens arrays with faithful shape replication[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27, 2781-2785(2009).

    [154] Wu J T, Chang W Y, Yang S Y. Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template[J]. Journal of Micromechanics and Microengineering, 20, 075023(2010).

    [155] Wu J T, Yang S Y. A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate[J]. Journal of Micromechanics and Microengineering, 20, 085038(2010).

    [156] Tokuhiro K, Okano M, Hachinohe S et al. Low temperature deformation mechanism of semiconductor single crystal and molding of Ge microlens array by direct electrical heating[J]. AIP Advances, 10, 045214(2020).

    [157] Li K S, Huang X F, Chen Q et al. Flexible fabrication of optical glass micro-lens array by using contactless hot embossing process[J]. Journal of Manufacturing Processes, 57, 469-476(2020).

    [158] Zhang L, Ma X Z, Zhuang J L et al. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method[J]. Advanced Materials, 19, 3912-3918(2007).

    [159] Qiao L L, He F, Wang C et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining[J]. Applied Physics A, 102, 179-183(2011).

    [160] Hu Y, Xiong Y, Chen X Y et al. Controllable long focal length microlens based on thermal expansion[J]. Applied Optics, 57, 4277-4282(2018).

    [161] Zhang X Y, Cheng H G, Zhu X et al. -03-19(2019).

    [162] Xu M, Zhou Z W, Wang Z et al. Self-assembled microlens array with controllable focal length formed on a selective wetting surface[J]. ACS Applied Materials & Interfaces, 12, 7826-7832(2020).

    [163] Cherng Y S. Su G D J. Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process[J]. Journal of Micromechanics and Microengineering, 24, 015016(2014).

    [164] Sun H, Wang X, Xiong Y et al. Fabrication of microlens based on overplating in electroforming[J]. Journal of Micromechanics and Microengineering, 26, 055007(2016).

    [165] Fang F Y, Tao X L, Chen X et al. Microlens fabrication by replica molding of electro-hydrodynamic printing liquid mold[J]. Micromachines, 11, 161(2020).

    [166] Shi J, Huang Y S, Peng L N et al. Grating/microlens arrays fabricated by hot-melting, self-assembly and replication[J]. Optical Materials, 104, 109733(2020).

    [167] Lian G G, Liu Y S, Tao K K et al. Fabrication and characterization of curved compound eyes based on multifocal microlenses[J]. Micromachines, 11, 854(2020).

    [168] Davies N A. McCormick M, Brewin M. Design and analysis of an image transfer system using microlens arrays[J]. Optical Engineering., 33, 3624-3633(1994).

    [169] Stevens R F, Harvey T G. Lens arrays for a three-dimensional imaging system[J]. Journal of Optics A: Pure and Applied Optics, 4, S17-S21(2002).

    [170] Ko H C, Stoykovich M P, Song J et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 454, 748-753(2008).

    [171] Kuo G, Liu F L, Grossrubatscher I et al. On-chip fluorescence microscopy with a random microlens diffuser[J]. Optics Express, 28, 8384-8399(2020).

    [172] Yang T C, Liu Y H, Mu Q Q et al. Compact compound-eye imaging module based on the phase diffractive microlens array for biometric fingerprint capturing[J]. Optics Express, 27, 7513-7522(2019).

    [173] Di S, Jin J. Binocular microlens imaging system based on micro fabrication technology and its application in vein-enhanced display[J]. International Journal of Optomechatronics, 13, 30-40(2019).

    [174] Tsukamoto A, Kamisaka W, Senda H et al. High sensitivity pixel technology for a 1/4-inch PAL 430 k pixel IT-CCD[C]∥Proceedings of Custom Integrated Circuits Conference, May 5-8, 1996, San Diego, CA, USA., 39-42(1996).

    [175] Baillie D A, Gendler J E. Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development[J]. Proceedings of SPIE, 5377, 953-959(2004).

    [176] Huo Y J, Fesenmaier C C, Catrysse P B. Microlens performance limits in sub-2μm pixel CMOS image sensors[J]. Optics Express., 18, 5861-5872(2010).

    [177] Kuo W C, Lin K F, Wu T L et al. -07-09(2019).

    [178] Zhang Z X, Chang J, Ren H X et al. Snapshot imaging spectrometer based on a microlens array[J]. Chinese Optics Letters, 17, 011101(2019).

    [179] Xie H B, Zhao M, Yang L et al. -03-02(2021).

    [180] Kang M H, Lee G J, Lee J H et al. Thin patch type tissue oximeter with deep light penetration depth by integrating micro lens array (MLA)[C]∥2020 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2020, San Jose, CA, USA., 1-2(2020).

    [181] Duan F, Zhu W L, Han Y J et al. Chromatically multi-focal optics based on micro-lens array design[J]. Optics Express, 28, 24123-24135(2020).

    [182] Gu T K, Wang L L, Mao M et al. Bilayer liquid-filled compound microlens arrays: a way to compensate aberration[J]. Journal of Applied Physics, 128, 163101(2020).

    [183] Peng Y Y, Zhou X T, Zhang Y A et al. Fabrication of a micro-lens array for improving depth-of-field of integral imaging 3D display[J]. Applied Optics, 59, 9104-9107(2020).

    [184] Banerji S, Meem M, Majumder A et al. Super-resolution imaging with an achromatic multi-level diffractive microlens array[J]. Optics Letters, 45, 6158-6161(2020).

    [185] Zhang F, Yang Q, Bian H et al. Fabrication of ZnSe microlens array for a wide infrared spectral region[J]. IEEE Photonics Technology Letters, 32, 1327-1330(2020).

    [186] An Y, Dong K Y, Li X et al. Design of laser communication optical system with microlens array based on 3 × 3 optical matrix[J]. Acta Optica Sinica, 40, 2206003(2020).

    [187] Chang S I, Yoon J B, Kim H K et al. Microlens array diffuser for a light-emitting diode backlight system[J]. Optics Letters, 31, 3016-3018(2006).

    [188] Suh M C, Pyo B, Lim B W et al. Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component[J]. Organic Electronics, 38, 316-322(2016).

    [189] Peer A, Biswas R, Park J M et al. Light management in perovskite solar cells and organic LEDs with microlens arrays[J]. Optics Express, 25, 10704-10709(2017).

    [190] Fischbach S, Schlehahn A, Thoma A et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source[J]. ACS Photonics, 4, 1327-1332(2017).

    [191] Kim Y H, Lee H, Kang S M et al. Long-term stable microlens array-integrated quantum dot/siloxane film for thin white backlight units[J]. ACS Applied Nano Materials, 3, 10261-10269(2020).

    [192] Jiang Q A. -04-02[P]. Chen L. LED street lamp based on curved surface microlens array: CN208687462U.(2019).

    [193] Yuan D, Liu B, Zhu Z C et al. Directional control and enhancement of light output of scintillators by using microlens arrays[J]. ACS Applied Materials & Interfaces, 12, 29473-29480(2020).

    [194] Yu X J, Xiang L Y, Zhou S L et al. Realization of microlens array on flat encapsulant layer for enhancing light efficiency of COB-LEDs[J]. IEEE Photonics Technology Letters, 32, 1315-1318(2020).

    [196] Peng Y Y, Peng R, Chu Z H et al. Fabrication of micro-lens arrays based on ink-jet printing and photolithographic hole templates for integral imaging 3-D display[J]. Journal of Display Technology, 12, 822-827(2016).

    [198] Möller S. -01-10[P]. Forrest S R. Micro-lens arrays for display intensity enhancement: US6984934.(2006).

    [201] Luebke D P, Lanman D, Fox T F et al. -12-12(2017).

    [202] Yan Z J, Du C L, Zhang H J. Design of a random microlens array extended screen for laser scanning display[J]. Electronics Optics & Control, 27, 98-102(2020).

    [203] Ratcliff J, Supikov A, Alfaro S et al. ThinVR: VR displays with wide FOV in a compact form factor. [C]∥ACM SIGGRAPH 2020 Emerging Technologies, August 17, 2020, Virtual Event, USA. New York: ACM, 1-2(2020).

    [204] Meng L X, Zhang Y M, Wan X J et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 361, 1094-1098(2018).

    [205] Moulé A J, Meerholz K. Interference method for the determination of the complex refractive index of thin polymer layers[J]. Applied Physics Letters, 91, 061901(2007).

    [206] Peer A, Biswas R. Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals[J]. ACS Photonics., 1, 840-847(2014).

    [207] Chen Y Q, Elshobaki M, Gebhardt R et al. Reducing optical losses in organic solar cells using microlens arrays: theoretical and experimental investigation of microlens dimensions[J]. Physical Chemistry Chemical Physics, 17, 3723-3730(2015).

    [208] Alsaigh R E, Bauer R. Lavery M P J. Multi-layer light trapping structures for enhanced solar collection[J]. Optics Express, 28, 31714-31728(2020).

    [209] Di S, Jin J, Tang G R et al. The fabrication of a multi-spectral lens array and its application in assisting color blindness[J]. International Journal of Optomechatronics, 10, 14-23(2016).

    [210] Jin J J, Zhang X H, Gao P et al. Ultrathin planar microlens arrays based on geometric metasurface[J]. Annalen Der Physik, 530, 1700326(2018).

    [211] Schäffner D, Preuschoff T, Ristok S et al. Arrays of individually controllable optical tweezers based on 3D-printed microlens arrays[J]. Optics Express, 28, 8640-8645(2020).

    [212] Bian H, Liang J, Li M J et al. Bioinspired underwater superoleophobic microlens array with remarkable oil-repellent and self-cleaning ability[J]. Frontiers in Chemistry, 8, 687(2020).

    [213] Zhou Q C, Bai Z L, Lu L et al. Remote phosphor technology for white LED applications: advances and prospects[J]. Chinese Optics, 8, 313-328(2015).

    [214] Ji H L, Zhou Q C, Pan J et al. Advances and prospects in quantum dots based backlights[J]. Chinese Optics, 10, 666-680(2017).

    [215] Zhu X X, Ge Y, Li J J et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 13, 62-74(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jianjun Li, Chunyan Chu, Weitong Lu, Pingping Zhang, Gaoling Yang, Haizheng Zhong, Yuejin Zhao. Development of Microlens Arrays: From Fabrication to Photonic Applications[J]. Acta Optica Sinica, 2021, 41(21): 2100001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Mar. 18, 2021

    Accepted: May. 18, 2021

    Published Online: Oct. 29, 2021

    The Author Email: Zhong Haizheng (hzzhong@bit.edu.cn), Zhao Yuejin (yjzhao@bit.edu.cn)

    DOI:10.3788/AOS202141.2100001

    Topics