Electro-Optic Technology Application, Volume. 38, Issue 1, 1(2023)

Progress of Numerical Calculation Methods for Infrared Radiation of Rocket Exhaust Plume (Invited)

NIU Qinglin1 and DONG Shikui2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(75)

    [1] [1] PAIVA C, SLUSHER H. Space-based missile exhaust plume sensing: strategies for DTCI of liquid and solid IRBM systems[C]//Space 2005. Long Beach, CA, USA: AIAA Press, 2005: 6820.

    [2] [2] LAWRIE D G, LOMHEIM T S. Advanced electro-optical space-based systems for missile surveillance[R]. El Segundo CA: The Aerospace Corporation, 2001: TR-2001(8556)-1.

    [3] [3] ALBINI F A. Approximate computation of underexpanded jet structure[J]. AIAA Journal, 1965, 3(8): 1535-1537.

    [4] [4] BOYNTON F P. Highly underexpanded jet structure-exact and approximate calculations[J]. AIAA Journal, 1967, 5(9): 1703-1704.

    [5] [5] ANDERSON E, TANNEHILL J. Intermediate altitude rocket exhaust plumes[J]. Journal of Spacecraft and Rockets, 1971, 8(10): 1052-1057.

    [6] [6] SIMMONS F. Rocket exhaust plume phenomenology[M]. El Segundo: Aerospace Press, 2000.

    [7] [7] WOODROFFE J. One-dimensional model for low-altitude rocket exhaust plumes[C]//13th Aerospace Sciences Meeting. Pasadena, Calif: AIAA, 1975: 244.

    [8] [8] HILL J A, HABERT R H. Gas dynamics of high altitude missile trails[R]. Cambridge, Mass: Mithras ins, Mithras Rept, 1963: MC61-18-R1.

    [9] [9] ALBINI F A. Approximate computation of underexpanded jet structure[J]. AIAA Journal, 1965, 3(8): 1535-1537.

    [10] [10] BOYNTON F P. Highly underexpanded jet structure-Eexact and approximate calculations[J]. AIAA Journal, 1967, 5(9): 1703-1704.

    [11] [11] SIMONS G A. Effects of nozzle boundary layers on rocket exhaust plumes[J]. AIAA Journal, 1972, 10(11): 1534-1535.

    [12] [12] CAI C P, WANG L M. Numerical validations for a set of collisionless rocket plume solutions[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 59-68.

    [13] [13] CAI C P, BOYD D, IAIN. Theoretical and numerical study of several free molecular flow problems[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. San Francisco, CA: AIAA Paper., 2006: 3800.

    [14] [14] CAI C P, BOYD I D. Theoretical and numerical study of free-molecular flow problems[J]. Journal of Spacecraft and Rockets, 2007, 44(3): 619-624.

    [15] [15] SIMMONS F. Rocket exhaust plume phenomenology: American Institute of Aeronautics and Astronautics[R]. Washington, DC: American Institute of Aeronautics and Astronautics, Inc, 2000.

    [17] [17] MAO H, FU D, BAO X. Engineering method of predicting rocket exhaust plumes at middle and low altitudes[J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1170-1177.

    [18] [18] NIU Q, FU D, DONG S, et al. A simplified model for fast estimating infrared thermal radiation of low-altitude under-expanded exhaust plumes[J]. International Journal of Heat and Mass Transfer, 2019, 136: 276-287.

    [19] [19] DASH S, PERGAMENT H, WOLF D, et al. The JANNAF standardized plume flow field code version II (SPF-II), Vols. I and II[R]. Humsville, AI: US Army Missile Command, 1990: TR-CR-RD-SS-90-4.

    [20] [20] Version G. 4.2 User's Manual. Aerosoft[R]. Blacksburg, VA: Inc, 2002, ISBN 09652780-5-0.

    [21] [21] LUDWIG C, MALKMUS W, WALKER J, et al. The standard infrared radiation model[C]//AlAA 16th Thermophysics Conference. Palo Alto, CA, 1981: 23-28.

    [22] [22] CHEVALIER P, COURBET B, DUTOYA D, et al. CEDRE: development and validation of a mulitphysic computational software[C]//1st European Conference for Aeronautics and Space Sciences. Moscow, Russie: EUCASS, 2005.

    [23] [23] TROYES J, DUBOIS I, BORIE V, et al. Multi-phase reactive numerical simulations of a model solid rocket exhaust jet[C]//42 nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit. Sacramento, California: AIAA, 2006: 4414.

    [24] [24] AVITAL G, COHEN Y, GAMSS L, et al. Experimental and computational study of infrared emission from underexpanded rocket exhaust plumes[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(4): 377-383.

    [29] [29] BIRD G A. Molecular gas dynamics[M]. New York: Oxford University Press, 1976.

    [30] [30] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[D]. New York: Oxford University Press, 1994.

    [31] [31] GIMELSHEIN S F, ALEXEENKOL A A, LEVIN D A. Modeling of chemically reacting flows from a side jet at high altitudes[R]. AIAA-2002-0212, 2002.

    [32] [32] KANNENBERG K C, BOYD I D. Three dimensional monte carlo simulation of plume impingement[R]. AIAA-1998-2755, 1998.

    [33] [33] MUNTZ E P. Rarefaction of very high altitude plumes with external flow[R]. Aerospace corporation report TR-0172(2240-10)-2, 1971.

    [34] [34] CAMPBELL D H. High altitude plume-freestream interaction flowfields: comparison of DSMC predictions with experimental measurements[C]//27th Thermophysics Conference. Nashville, TN, USA: AIAA, 1992: 2857.

    [35] [35] BURT J M, BOYD I D. Development of a two-way coupled model for two phase rarefied flows[C]//42th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2005: 964.

    [36] [36] GIORDANO D, IVANOV M, KASHKOVSKY A , et al. Application of DSMC to the study of satellite thruster plumes[C]//32nd Thermophysics Conference. Atlanta, GA, USA: AIAA Paper, 1997: 2538.

    [37] [37] GATSONIS N, YIN X. Axisymmetric DSMC-PIC simulation of quasineutral partially ionized jets[C]//32nd Thermophysics Conference. Atlanta, GA, USA: AIAA Paper, 1997: 2535.

    [38] [38] GEORGE J D. A combined CFD-DSMC method for numerical simulation of nozzle plume flows[D]. Ithaca, New York, USA : Cornell University, 2000.

    [39] [39] SHEN Q. Information preservation (IP) method in simulation of internal rarefied gas flows in MEMS[J]. Advances in Mechanics, 2006, 36(1): 142-150.

    [40] [40] LIU C, WANG L, ZHENG Y, et al. Temperature triggered stoichiometry-dependent desorption from the growth interface of nanofilm[J]. Journal of Applied Physics, 2018, 124(23): 235306-1-235306-7.

    [46] [46] ROTHMAN L S, RINSLAND C, GOLDMAN A, et al. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation)[J]. Journal of quantitative spectroscopy and radiative transfer, 1998, 60(5): 665-710.

    [47] [47] ROTHMAN L S, GORDON I E, BARBE A, et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9-10): 533-572.

    [48] [48] GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

    [49] [49] ROTHMAN L, GORDON I, BARBER R, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2139-2150.

    [50] [50] TASHKUN S, PEREVALOV V. CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(9): 1403-1410.

    [51] [51] HUSSON N, BONNET B, SCOTT N, et al. Management and study of spectroscopic information: the GEISA program[J]. Journal of Quantitative Spectroscopy and Radiative Transfer 1992, 48(5-6): 509-518.

    [52] [52] JACQUINET-HUSSON N, ARMANTE R, SCOTT N, et al. The 2015 edition of the GEISA spectroscopic database[J]. Journal of Molecular Spectroscopy, 2016, 327: 31-72.

    [53] [53] CHENG X P, JING Z Z, YONG S. Effects of exhaust temperature on helicopter infrared signature[J]. Applied Thermal Engineering, 2013, 51(1-2): 529-538.

    [54] [54] MEI F, CHEN S, JIANG Y, et al. A preliminary model of infrared image generation for exhaust plume[J]. International Journal of Image, Graphics and Signal Processing, 2011, 3(4): 46.

    [55] [55] MODEST M F, ZHANG H. The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures[J]. Journal of Heat Transfer, 2002, 124(1): 30-38.

    [56] [56] TAINE J. A line-by-line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gases mixtures up to 3 000 K[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1983, 30(4): 371-379.

    [57] [57] SOUFIANI A, TAINE J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2[J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 987-991.

    [58] [58] HARTMANN J, DI LEON R L, TAINE J. Line-by-line and narrow-band statistical model calculations for H2O[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1984, 32(2): 119-127.

    [59] [59] RIALLAND V, GUY A, GUEYFFIER D, et al. Infrared signature modelling of a rocket jet plume-comparison with flight measurements[C]//Eurotherm Conference, IOP Publishing, 2016, 676(1): 012020.

    [60] [60] SVENTITSKIY A, MUNDT C. Application of the narrowband correlated-k method to numerical simulation of nonscattering exhaust plume IR emissions[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, Georgia: AIAA, 2012: 4222.

    [61] [61] JO S M, KIM J W, KWON O J. A narrow-band k-distribution model with single mixture gas assumption for radiative flows[J]. Infrared Physics &Technology, 2018, 91: 27-36.

    [65] [65] ZHOU Y, WANG Q, LI T. A new model to simulate infrared radiation from an aircraft exhaust system[J]. Chinese Journal of Aeronautics, 2017, 30(2): 651-662.

    [68] [68] CHARALAMPOPOULOS T T, FELSKE J D. Refractive indices of soot particles deduced from in-situ laser light scattering measurements[J]. Combustion and Flame, 1987, 68(3): 283-294.

    [69] [69] MISHRA S C, KRISHNA C H, KIM M Y. Analysis of conduction and radiation heat transfer in a 2-D cylindrical medium using the modified discrete ordinate method and the lattice Boltzmann method[J]. Numerical Heat Transfer, Part A: Applications, 2011, 60(3): 254-287.

    [70] [70] SELCUK N, SIDDALL R. Two-flux spherical harmonic modelling of two-dimensional radiative transfer in furnaces[J]. International Journal of Heat and Mass Transfer, 1976, 19(3): 313-321.

    [71] [71] SVENTITSKIY A, MUNDT C. A finite volume based method for narrow-band simulations of thermal radiation from participating media[C]//11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Atlanta, GA: AIAA, 2014: 2677.

    [72] [72] MCCLARREN R, URBATSCH T. Temperature-extrapolation method for implicit Monte Carlo-radiation hydrodynamics calculations[C]//Proc ANS Topical Meeting, International Topical Meeting on Mathematics and Computation Sun Valley. Sun Valley, Idaho, USA: American Nuclear Society: 2013.

    [73] [73] FABIGNON Y, ANTHOINE J, DAVIDENKO D, et al. Recent advances in research on solid rocket propulsion[J]. Aerospace Lab, 2016(11): 15.

    [74] [74] BARANWALL N, MAHULIKAR S P. Infrared signature of aircraft engine with choked converging nozzle[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(4): 854-862.

    [79] [79] CAI G, ZHU D, ZHANG X. Numerical simulation of the infrared radiative signatures of liquid and solid rocket plumes[J]. Aerospace Science and Technology, 2007, 11(6): 473-480.

    [80] [80] FAN S W, ZHANG X Y, ZHU D Q, et al. Calculation of the infrared characteristics of the solid rocket plume with FVM method[J]. Journal of Astronautics, 2005, 26(6): 793-797.

    [81] [81] ZHANG X Y, ZHU D Q, CAI G B. Study the infrared characteristics of the solid rocket plume with DOM method and the influence of altitude[J]. Journal of Astronautics, 2007, 28(3): 702-706.

    [85] [85] LUDWIG C B, KLIER A M, MALKMUS W, et al. Infrared radiation from rocket plumes[C]//34th Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering. San Diego, CA, United States: SPIE, 1990, 1341: 410-423.

    [86] [86] NOAH M A, KRISTL J A, SCHROEDER J W, et al. NIRATAM-NATO infrared air target model[C]//Surveillance Technologies. Orlando, FL, United States: SPIE, 1991, 1479: 275-282.

    [87] [87] GAUFFRE G. Aircraft infrared radiation modeling[J]. La Recherche Aerospatiale, 1981(4): 245-265.

    [88] [88] JOHANSSON M, DALENBRING M S. Aprediction tool for aeronautical IR signatures, and its applications[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. San Francisco, California: AIAA, 2006: 3276.

    [89] [89] DEVIR A, LESSIN A, COHEN Y, et al. Comparison of calculated and measured radiation from a rocket motor plume[C]//39th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV: AIAA, 2001: 358.

    [90] [90] PLASTININ Y, KARABDZHAK G, KHMELININ B, et al. Ultraviolet, visible and infrared spectra modeling for solid and liquid-fuel rocket exhausts[C]//39th AIAA aerospace sciences meeting & exhibit. Reno, NV: AIAA, 2001: 660.

    [91] [91] BLANC A, DEIMLING L, EISENREICH N. UV-and IR-signatures of rocket plumes[J]. Propellants, Explosives, Pyrotechnics, 2002, 27(3): 185-189.

    [92] [92] ROBLIN A, DUBOIS I, GRISCH F, et al. Comparison between computations and measurements of a H2/LOX rocket motor plume[C]//8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. St. Louis, Missouri: AIAA, 2002: 3107.

    [94] [94] KIM S, KIM M, SONG S, et al. Numerical and experimental study on infrared signature of solid rocket motor[J]. Journal of the Korean Society of Propulsion Engineers, 2014, 18(5): 62-69.

    [95] [95] WANG W, LI S, ZHANG Q, et al. Infrared radiation signature of exhaust plume from solid propellants with different energy characteristics[J]. Chinese Journal of Aeronautics, 2013, 26(3): 594-600.

    [96] [96] RANKIN BA, IHME M, GORE J P. Quantitative model-based imaging of mid-infrared radiation from a turbulent nonpremixed jet flame and plume[J]. Combustion and Flame, 2015, 162(4): 1275-1283.

    [97] [97] STOWE R, RINGUETTE S, FOURNIER P, et al. Effect of flight and motor operating conditions on infrared signature predictions of rocket exhaust plumes[J]. International Journal of Energetic Materials and Chemical Propulsion, 2015, 14(1): 112.

    [98] [98] BARTON P, PIERCE B, FREEMAN N, et al. Atlas spectral imagery data and mechanisms[J]. AIAA Paper, 2001, 1121: 2001.

    CLP Journals

    [1] ZOU Dongyang, LI Guo, LI Yanfeng, XIA Jinbao, NIE Hongkun, ZHANG Baitao. Simulation Analysis and Experimental Study of Laser Annealing for SiC Power Devices[J]. Electro-Optic Technology Application, 2024, 39(1): 39

    [2] WEI Yu, ZHANG Aiguo, QIAO Shan, LIU Zhiming, SHENG Liwen, HUANG Lin. Output Characteristics of External Cavity Tunable Semiconductor Lasers (Invited)[J]. Electro-Optic Technology Application, 2023, 38(5): 1

    Tools

    Get Citation

    Copy Citation Text

    NIU Qinglin, DONG Shikui. Progress of Numerical Calculation Methods for Infrared Radiation of Rocket Exhaust Plume (Invited)[J]. Electro-Optic Technology Application, 2023, 38(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 13, 2023

    Accepted: --

    Published Online: Apr. 3, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics