Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 2, 84(2025)
Research progress on broadband terahertz sources: from gas to liquid
[1] [1] HAMSTER H, SULLIVAN A, GORDON S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 1993, 71(17): 2725-2728. doi: 10.1103/PhysRevLett.71.2725.
[2] [2] HAMSTER H, SULLIVAN A, GORDON S, et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J]. Physical Review E, 1994, 49(1): 671-677. doi: 10.1103/PhysRevE.49.671.
[3] [3] COOK D J, HOCHSTRASSER R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 2000, 25(16): 1210-1212. doi: 10.1364/OL.25.001210.
[4] [4] CLERICI M, PECCIANTI M, SCHMIDT B E, et al. Wavelength scaling of terahertz generation by gas ionization[J]. Physical Review Letters, 2013, 110(25): 253901. doi: 10.1103/PhysRevLett.110.253901.
[5] [5] XIE Xu, DAI Jianming, ZHANG Xicheng. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters, 2006, 96(7): 075005. doi: 10.1103/PhysRevLett.96.075005.
[6] [6] DAI Jianming, LIU Jingle, ZHANG Xicheng. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190. doi: 10.1109/JSTQE.2010.2047007.
[7] [7] JAHANGIRI F, HASHIDA M, NAGASHIMA T, et al. Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses[J]. Applied Physics Letters, 2011, 99(26): 261503-1-3. doi: 10.1063/1.3672814.
[8] [8] NAGASHIMA T, HIRAYAMA H, SHIBUYA K, et al. Terahertz pulse radiation from Argon clusters irradiated with intense femtosecond laser pulses[J]. Optics Express, 2009, 17(11): 8907-8912. doi: 10.1364/OE.17.008907.
[9] [9] MORI K, HASHIDA M, NAGASHIMA T, et al. Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams[J]. Applied Physics Letters, 2017, 111(24): 241107. doi: 10.1063/1.4991736.
[10] [10] JIN Q, WILLIAMS K, DAI J, et al. Observation of broadband terahertz wave generation from liquid water[J]. Applied Physics Letters, 2017, 111(7): 071103-1-4. doi: 10.1063/1.4990824.
[11] [11] DEY I, JANA K, FEDOROV V Y, et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids[J]. Nature Communications, 2017, 8(1): 1184. doi: 10.1038/s41467-017-01382-x.
[12] [12] YIWEN E, JIN Q, TCYPKIN A, et al. Terahertz wave generation from liquid water films via laser-induced breakdown[J]. Applied Physics Letters, 2018, 113(18): 181103. doi: 10.1063/1.5054599.
[13] [13] JIN Q, DAI J M, ZHANG X C. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields[J]. Applied Physics Letters, 2018, 113(26): 261101. doi: 10.1063/1.5064644.
[14] [14] TCYPKIN A N, PONOMAREVA E A, PUTILIN S E, et al. Flat liquid jet as a highly efficient source of terahertz radiation[J]. Optics Express, 2019, 27(11): 15485-15494. doi: 10.1364/OE.27.015485.
[15] [15] ZHANG Liangliang, WANG Weimin, WU Tong, et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 2019, 12(1): 014005. doi: 10.1103/PhysRevApplied.12.014005.
[16] [16] BALAKIN A V, COUTAZ J L, MAKAROV V A, et al. Terahertz wave generation from liquid nitrogen[J]. Photonics Research, 2019, 7(6): 678-686. doi: 10.1364/PRJ.7.000678.
[17] [17] GOPAL A, SINGH P, HERZER S, et al. Characterization of 700 J T rays generated during high-power laser solid interaction[J]. Optics Letters, 2013, 38(22): 4705-4707. doi: 10.1364/OL.38.004705.
[18] [18] LIAO Guoqian, LI Yutong, LIU Hao, et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences, 2019, 116(10): 3994-3999. doi: 10.1073/pnas.1815256116.
[19] [19] WOLDEGEORGIS A, KURIHARA T, ALMASSARANI M, et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser-thin foil interaction[J]. Optica, 2018, 5(11): 1474-1477. doi: 10.1364/OPTICA.5.001474.
[20] [20] LIAO Guoqian, LI Yutong, ZHANG Yihang, et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions[J]. Physical Review Letters, 2016, 116(20): 205003. doi: 10.1103/PhysRevLett.116.205003.
[21] [21] MIZIOLEK A W, PALLESCHI V, SCHECHTER I. Laser induced breakdown spectroscopy[M]. Cambridge: Cambridge University Press, 2006.
[22] [22] ANABITARTE F, COBO A, LOPEZ-HIGUERA J M. Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges[J]. International Scholarly Research Notices, 2012, 2021(1): 285240. doi: 10.5402/2012/285240.
[23] [23] KEARTON B, MATTLEY Y. Sparking new applications[J]. Nature Photonics, 2008, 2(9): 537-540. doi: 10.1038/nphoton.2008.173.
[24] [24] CORDE S, TA-PHUOC K, LAMBERT G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1.
[25] [25] YOSHII J, LAI C, KATSOULEAS T, et al. Radiation from Cerenkov wakes in a magnetized plasma[J]. Physical Review Letters, 1997, 79(21): 4194-4197. doi: 10.1103/PhysRevLett.79.4194.
[26] [26] KUK D, YOO Y, ROSENTHAL E, et al. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air[J]. Applied Physics Letters, 2016, 108(12): 121106. doi: 10.1063/1.4944843.
[27] [27] OH T, YOO Y J, YOU Y S, et al. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling[J]. Applied Physics Letters, 2014, 105(4): 041103-1-4. doi: 10.1063/1.4891678.
[28] [28] ZHANG X C, SHKURINOV A, ZHANG Y. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1): 16-18. doi: 10.1038/nphoton.2016.249.
[29] [29] RODRIGUEZ G, DAKOVSKI G L. Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence[J]. Optics Express, 2010, 18(14): 15130-15143. doi: 10.1364/OE.18.015130.
[30] [30] CHIN S L, WANG T J, MARCEAU C, et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 2012, 22(1): 1-53. doi: 10.1134/S1054660X11190054.
[31] [31] SAGISAKA A, DAIDO H, NASHIMA S, et al. Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction[J]. Applied Physics B, 2008, 90(3): 373-377. doi: 10.1007/s00340-008-2931-8.
[32] [32] LEEMANS W P, GEDDES C G P, FAURE J, et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary[J]. Physical Review Letters, 2003, 91(7): 074802. doi: 10.1103/PhysRevLett.91.074802.
[33] [33] D'AMICO C, HOUARD A, FRANCO M, et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 2007, 98(23): 235002. doi: 10.1103/PhysRevLett.98.235002.
[34] [34] CHEN Yunqing, YAMAGUCHI M, WANG Mingfeng, et al. Terahertz pulse generation from noble gases[J]. Applied Physics Letters, 2007, 91(25): 251116. doi: 10.1063/1.2826544.
[35] [35] ZHAO Hang, ZHANG Liangliang, HUANG Suxia, et al. Terahertz wave generation from noble gas plasmas induced by a wavelength-tunable femtosecond laser[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(3): 299-304. doi: 10.1109/TTHZ.2018.2820425.
[36] [36] KRESS M, LFFLER T, EDEN S, et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves[J]. Optics Letters, 2004, 29(10): 1120-1122. doi: 10.1364/OL.29.001120.
[37] [37] ZHANG Liangliang, WANG Weimin, WU Tong, et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios[J]. Physical Review Letters, 2017, 119(23): 235001. doi: 10.1103/PhysRevLett.119.235001.
[38] [38] KOULOUKLIDIS A D, GOLLNER C, SHUMAKOVA V, et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 2020, 11(1): 292. doi: 10.1038/s41467-019-14206-x.
[39] [39] DAI J M, KARPOWICZ N, ZHANG X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma[J]. Physical Review Letters, 2009, 103(2): 023001. doi: 10.1103/PhysRevLett.103.023001.
[40] [40] WEN H D, LINDENBERG A M. Coherent terahertz polarization control through manipulation of electron trajectories[J]. Physical Review Letters, 2009, 103(2): 023902. doi: 10.1103/PhysRevLett.103.023902.
[41] [41] KIM K Y, TAYLOR A J, RODRIGUEZ G. Generation of coherent terahertz radiation in ultrafast laser-gas interactions[J]. Physics of Plasmas, 2009, 16(5): 56706. doi: 10.1063/1.3134422.
[42] [42] KIM K Y, GLOWNIA J H, TAYLOR A J, et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields[J]. Optics Express, 2007, 15(8): 4577-4584. doi: 10.1364/OE.15.004577.
[43] [43] KIM K Y, TAYLOR A J, GLOWNIA J, et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2008, 2(10): 605-609. doi: 10.1038/nphoton.2008.153.
[44] [44] KARPOWICZ N, ZHANG X C. Coherent terahertz echo of tunnel ionization in gases[J]. Physical Review Letters, 2009, 102(9): 093001. doi: 10.1103/PhysRevLett.102.093001.
[45] [45] DAI Jianming, XIE Xu, ZHANG X C. Detection of broadband terahertz waves with a laser-induced plasma in gases[J]. Physical Review Letters, 2006, 97(10): 103903. doi: 10.1103/PhysRevLett.97.103903.
[46] [46] KARPOWICZ N, DAI J M, LU X F, et al. Coherent heterodyne time-domain spectrometry covering the entire "terahertz gap"[J]. Applied Physics Letters, 2008, 92(1): 011131-1-3. doi: 10.1063/1.2828709.
[47] [47] WU Q, ZHANG X C. 7 terahertz broadband GaP electro-optic sensor[J]. Applied Physics Letters, 1997, 70(14): 1784-1786. doi: 10.1063/1.118691.
[48] [48] WU Tong, DONG Liquan, HUANG Suxia, et al. Excitation-wavelength-dependent terahertz wave modulation via preformed air plasma[J]. Applied Physics Letters, 2018, 112(17): 171106. doi: 10.1063/1.5022448.
[49] [49] MA Danni, DONG Liquan, ZHANG Minghao, et al. Terahertz wave generation from two-color laser-excited air plasma modulated by bichromatic laser fields[J]. IEEE Transactions on Terahertz Science and Technology, 2022, 12(3): 267-273. doi: 10.1109/TTHZ. 2022.3149975.
[50] [50] BAGLEY J D, MOSS C D, SORENSON S A, et al. Laser-induced plasma generation of terahertz radiation using three incommensurate wavelengths[J]. Journal of Physics B: Atomic Molecular and Optical Physics, 2018, 51(14): 144004. doi: 10.1088/1361-6455/aac6ef.
[51] [51] VAIAITIS V, BALACHNINAIT O, MORGNER U, et al. Terahertz radiation generation by three-color laser pulses in air filament[J]. Journal of Applied Physics, 2019, 125(17): 173103. doi: 10.1063/1.5078683.
[52] [52] MA Danni, DONG Liquan, ZHANG Minghao, et al. Enhancement of terahertz waves from two-color laser-field induced air plasma excited using a third-color femtosecond laser[J]. Optics Express, 2020, 28(14): 20598-20608. doi: 10.1364/OE.395130.
[53] [53] LIU Shaojie, FAN Zhengquan, LU Chenhui, et al. Coherent control of boosted terahertz radiation from air plasma pumped by a femtosecond three-color sawtooth field[J]. Physical Review A, 2020, 102(6): 063522. doi: 10.1103/PhysRevA.102.063522.
[54] [54] WANG Shixiang, LU Chenhui, FAN Zhengquan, et al. Coherently controlled ionization of gases by three-color femtosecond laser pulses[J]. Physical Review A, 2022, 105(2): 023529. doi: 10.1103/PhysRevA.105.023529.
[55] [55] FENG Shijia, DONG Liquan, TAN Yong, et al. Observation on the competition mechanism of terahertz wave generation from filament in bias electric field[J]. Optics Communications, 2020(473): 125917. doi: 10.1016/j.optcom.2020.125917.
[56] [56] MANCEAU J M, MASSAOUTI M, TZORTZAKIS S. Strong terahertz emission enhancement via femtosecond laser filament concatenation in air[J]. Optics Letters, 2010, 35(14): 2424-2426. doi: 10.1364/OL.35.002424.
[57] [57] ZHANG Zhelin, CHEN Yanping, CHEN Min, et al. Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air[J]. Physical Review Letters, 2016, 117(24): 243901. doi: 10.1103/PhysRevLett.117.243901.
[58] [58] HE Boqu, NAN Junyi, LI Min, et al. Terahertz modulation induced by filament interaction[J]. Optics Letters, 2017, 42(5): 967-970. doi: 10.1364/OL.42.000967.
[59] [59] ZHANG Zhelin, CHEN Yanping, LIU Yang, et al. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air[J]. Applied Physics Letters, 2014, 105(10): 101110. doi: 10.1063/1.4895720.
[60] [60] ZHANG Yizhu, JIAO Zhihong, HE Tao, et al. Intensity-surged and bandwidth-extended terahertz radiation in two-foci cascading plasmas[J]. Optics Letters, 2022, 47(15): 3816-3819. doi: 10.1364/OL.465496.
[61] [61] VAIAITIS V, TAMULIEN V. Beam-distortion enhanced terahertz radiation generation in air[J]. Results in Physics, 2022(42): 105985. doi: 10.1016/j.rinp.2022.105985.
[62] [62] KUK D, YOO Y, ROSENTHAL E, et al. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air[J]. Applied Physics Letters, 2016, 108(12): 121106. doi: 10.1063/1.4944843.
[63] [63] MORADI S, GANJOVI A, SHOJAEI F, et al. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses[J]. Physics of Plasmas, 2015, 22(4): 043108. doi: 10.1063/1.4916123.
[64] [64] NGUYEN A, DE ALAIZA-MARTNEZ P G, THIELE I, et al. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses[J]. New Journal of Physics, 2018, 20(3): 033026. doi: 10.1088/1367-2630/aaa470.
[65] [65] ZHANG Z, PANOV N, ANDREEVA V, et al. Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air[J]. Applied Physics Letters, 2018, 113(24): 241103. doi: 10.1063/1.5053893.
[66] [66] RODRIGUEZ G, DAKOVSKI G L. Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence[J]. Optics Express, 2010, 18(14): 15130-15143. doi: 10.1364/OE.18.015130.
[67] [67] CHIN S L, WANG T J, MARCEAU C, et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 2012, 22(1): 1-53. doi: 10.1134/S1054660X11190054.
[68] [68] WILLIAMS F, VARMA S, HILLENIUS S. Liquid water as a lone-pair amorphous semiconductor[J]. The Journal of Chemical Physics, 1976, 64(4): 1549-1554. doi: 10.1063/1.432377.
[69] [69] NIKOGOSYAN D N, ORAEVSKY A A, RUPASOV V I. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation[J]. Chemical Physics, 1983, 77(1): 131-143. doi: 10.1016/0301-0104(83)85070-8.
[70] [70] CROWELL R A, BARTELS D M. Multiphoton ionization of liquid water with 3.0~5.0 eV photons[J]. The Journal of Physical Chemistry, 1996, 100(45): 17940-17949. doi: 10.1021/jp9610978.
[71] [71] KENNEDY P K, HAMMER D X, ROCKWELL B A. Laser-induced breakdown in aqueous media[J]. Progress in Quantum Electronics, 1997, 21(3): 155-248. doi: 10.1016/S0079-6727(97)00002-5.
[72] [72] HAMSTER H, SULLIVAN A, GORDON S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 1993, 71(17): 2725-2728. doi: 10.1103/PhysRevLett.71.2725.
[73] [73] HAMSTER H, SULLIVAN A, GORDON S, et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J]. Physical Review E, 1994, 49(1): 671-677. doi: 10.1103/PhysRevE.49.671.
[74] [74] HALE G M, QUERRY M R. Optical constants of water in the 200 nm to 200 m wavelength region[J]. Applied Optics, 1973, 12(3): 555-563. doi: 10.1364/AO.12.000555.
[75] [75] JIN Qi, YIWEN E, GAO Shenghan, et al. Preference of subpicosecond laser pulses for terahertz wave generation from liquids[J]. Advanced Photonics, 2020, 2(1): 015001. doi: 10.1117/1. AP.2.1.015001.
[76] [76] JIN Q, YIWEN E, ZHANG X C. Enhancement of terahertz emission by a preformed plasma in liquid water[J]. Applied Physics Letters, 2019, 115(10): 101101. doi: 10.1063/1.5119812.
[77] [77] CAO Yuqi, HUANG Pingjie, ZHANG Xicheng. Broadband terahertz wave emission from liquid metal[J]. Applied Physics Letters, 2020, 117(4): 041107. doi: 10.1063/5.0015507.
[78] [78] SNYDER L R. Classification of the solvent properties of common liquids[J]. Journal of Chromatography A, 1974, 92(2): 223-230. doi: 10.1016/S0021-9673(00)85732-5.
[79] [79] ZHAO Hang, TAN Yong, WU Tong, et al. Strong anisotropy in aqueous salt solutions revealed by terahertz-induced Kerr effect[J]. Optics Communications, 2021(497): 127192. doi: 10.1016/j.optcom.2021.127192.
[80] [80] ZHANG Minghao, XIAO Wen, WANG Weimin, et al. Highly sensitive detection of broadband terahertz waves using aqueous salt solutions[J]. Optics Express, 2022, 30(21): 39142-39151. doi: 10.1364/OE.472753.
Get Citation
Copy Citation Text
GAO Yuze, WU Ruoxi, ZHANG Liangliang. Research progress on broadband terahertz sources: from gas to liquid[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(2): 84
Category:
Received: Jul. 14, 2024
Accepted: Mar. 13, 2025
Published Online: Mar. 13, 2025
The Author Email: Liangliang ZHANG (liangliang_zhang@cnu.edu.cn)