International Journal of Extreme Manufacturing, Volume. 6, Issue 4, 42005(2024)

Novel fabrication techniques for ultra-thin silicon based flexible electronics

Lee Ju Young... Ju Jeong Eun, Lee Chanwoo, Won Sang Min and Yu Ki Jun |Show fewer author(s)
References(358)

[1] [1] Gao W, Ota H, Kiriya D, Takei K and Javey A 2019 Flexible electronics toward wearable sensing Acc. Chem. Res.52 523–33

[2] [2] Gao Y J, Yu L T, Yeo J C and Lim C T 2020 Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability Adv. Mater.32 1902133

[3] [3] Yin R Y, Wang D P, Zhao S F, Lou Z and Shen G Z 2021 Wearable sensors-enabled human–machine interaction systems: from design to application Adv. Funct. Mater.31 2008936

[4] [4] Corzo D, Tostado-Blzquez G and Baran D 2020 Flexible electronics: status, challenges and opportunities Front. Electron.1 594003

[5] [5] Bringans R D and Veres J 2016. Challenges and opportunities in flexible electronics 2016 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) pp 6.4.1–2

[6] [6] Guo J H, Yu Y R, Cai L J, Wang Y, Shi K Q, Shang L R, Pan J Y and Zhao Y J 2021 Microfluidics for flexible electronics Mater. Today44 105–35

[7] [7] Khan Y, Ostfeld A E, Lochner C M, Pierre A and Arias A C 2016 Monitoring of vital signs with flexible and wearable medical devices Adv. Mater.28 4373–95

[8] [8] Das T K and Prusty S 2012 Review on conducting polymers and their applications Polym. Plast. Technol. Eng.51 1487–500

[9] [9] Wang C L, Dong H L, Jiang L and Hu W P 2018 Organic semiconductor crystals Chem. Soc. Rev.47 422–500

[10] [10] Usman M, Mendiratta S and Lu K L 2017 Semiconductor metal–organic frameworks: future low-bandgap materials Adv. Mater.29 1605071

[11] [11] Campbell M G and Dinc˘a M 2017 Metal–organic frameworks as active materials in electronic sensor devices Sensors17 1108

[12] [12] Jung H S and Park N G 2015 Perovskite solar cells: from materials to devices Small11 10–25

[13] [13] Green M A, Ho-Baillie A and Snaith H J 2014 The emergence of perovskite solar cells Nat. Photon.8 506–14

[14] [14] Lewis J 2006 Material challenge for flexible organic devices Mater. Today9 38–45

[15] [15] Pan T, Liu S H, Zhang L T and Xie W F 2022 Flexible organic optoelectronic devices on paper iScience25 103782

[16] [16] Carey T et al 2023 High-mobility flexible transistors with low-temperature solution-processed tungsten dichalcogenides ACS Nano17 2912–22

[17] [17] Bretos I, Jimnez R, Wu A Y, Kingon A I, Vilarinho P M and Calzada M L 2014 Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics Adv. Mater.26 1405–9

[18] [18] Shi R J, Jiao S L, Yue Q Q, Gu G Q, Zhang K and Zhao Y 2022 Challenges and advances of organic electrode materials for sustainable secondary batteries Exploration2 20220066

[19] [19] Ling H F, Liu S H, Zheng Z J and Yan F 2018 Organic flexible electronics Small Methods2 1800070

[20] [20] Allen M J, Tung V C and Kaner R B 2010 Honeycomb carbon: a review of graphene Chem. Rev.110 132–45

[21] [21] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Mechanical properties of graphene and boronitrene Phys. Rev. B 85 125428

[22] [22] Mecklenburg M and Regan B C 2011 Spin and the honeycomb lattice: lessons from graphene Phys. Rev. Lett.106 116803

[23] [23] Sun D M, Liu C, Ren W C and Cheng H M 2013 A review of carbon nanotube- and graphene-based flexible thin-film transistors Small9 1188–205

[24] [24] Schwierz F 2013 Graphene transistors: status, prospects, and problems Proc. IEEE101 1567–84

[25] [25] Schwierz F 2010 Graphene transistors Nat. Nanotechnol.5 487–96

[26] [26] Sang M Y, Shin J, Kim K and Yu K J 2019 Electronic and thermal properties of graphene and recent advances in graphene based electronics applications Nanomaterials9 374

[27] [27] Del Alamo J A 2011 Nanometre-scale electronics with III–V compound semiconductors Nature479 317–23

[28] [28] Li T K, Mastro M and Dadgar A 2010 III–V Compound Semiconductors: Integration with Silicon-based Microelectronics (CRC Press)

[29] [29] Jo J W, Kang S H, Heo J S, Kim Y H and Park S K 2020 Flexible metal oxide semiconductor devices made by solution methods Chem. Eur. J.26 9126–56

[30] [30] Thomas S R, Pattanasattayavong P and Anthopoulos T D 2013 Solution-processable metal oxide semiconductors for thin-film transistor applications Chem. Soc. Rev.42 6910–23

[31] [31] Tilli M and Haapalinna A 2020 Properties of silicon Handbook of Silicon Based MEMS Materials and Technologies 3rd edn, ed M Tilli, M Paulasto-Krockel, M Petzold, H Theuss, T Motooka and V Lindroos (Elsevier) pp 3–17

[32] [32] Tsuchiya T 2008 Silicon and related materials Comprehensive Microsystems ed Y B Gianchandani, O Tabata and H Zappe (Elsevier) pp 1–23

[33] [33] Rogers J A, Lagally M G and Nuzzo R G 2011 Synthesis, assembly and applications of semiconductor nanomembranes Nature477 45–53

[34] [34] Baca A J, Meitl M A, Ko H C, Mack S, Kim H S, Dong K J, Ferreira P M and Rogers J A 2007 Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers Adv. Funct. Mater.17 3051–62

[35] [35] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol.7 699–712

[36] [36] Joseph S, Mohan J, Lakshmy S, Thomas S, Chakraborty B, Thomas S and Kalarikkal N 2023 A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures Mater. Chem. Phys.297 127332

[37] [37] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 2D transition metal dichalcogenides Nat. Rev. Mater.2 17033

[38] [38] Vidor F F, Meyers T and Hilleringmann U 2015 Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors Electronics4 480–506

[39] [39] Lee J S, Kovalenko M V, Huang J, Chung D S and Talapin D V 2011 Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays Nat. Nanotechnol.6 348–52

[40] [40] Liu Z, Xu J, Chen D and Shen G Z 2015 Flexible electronics based on inorganic nanowires Chem. Soc. Rev.44 161–92

[41] [41] Zavabeti A, Jannat A, Zhong L, Haidry A A, Yao Z J and Ou J Z 2020 Two-dimensional materials in large-areas: synthesis, properties and applications Nano-Micro Lett.12 66

[42] [42] Zhang K X, Zhang L B, Han L, Wang L, Chen Z Q Z, Xing H Z and Chen X S 2021 Recent progress and challenges based on two-dimensional material photodetectors Nano Express2 012001

[43] [43] Mokkapati S and Jagadish C 2009 III–V compound SC for optoelectronic devices Mater. Today12 22–32

[44] [44] Park J S, Tang M C, Chen S M and Liu H Y 2020 Heteroepitaxial growth of III–V semiconductors on silicon Crystals10 1163

[45] [45] Gupta S, Navaraj W T, Lorenzelli L and Dahiya R 2018 Ultra-thin chips for high-performance flexible electronics npj Flex. Electron.2 8

[46] [46] Lee J Y et al 2023 Ultrathin crystalline silicon nano and micro membranes with high areal density for low-cost flexible electronics Small19 2302597

[47] [47] Yu K J, Yan Z, Han M D and Rogers J A 2017 Inorganic semiconducting materials for flexible and stretchable electronics npj Flex. Electron.1 4

[48] [48] Deng R, Chang N L, Ouyang Z and Chong C M 2019 A techno-economic review of silicon photovoltaic module recycling Renew. Sustain. Energy Rev.109 532–50

[49] [49] Kim D E and Sung I H 2013 Lithography Encyclopedia of Tribology ed Q J Wang and Y W Chung (Springer) pp 1994–2007

[50] [50] Vladimirsky Y 1999 Lithography Vacuum Ultraviolet Spectroscopy: Experimental Methods in Physical Sciences ed J A R Samson and D L Ederer (Academic) pp 205–23

[51] [51] Sun Y and Rogers J A 2007 Inorganic semiconductors for flexible electronics Adv. Mater.19 1897–916

[52] [52] Chang T C, Tsao Y C, Chen P H, Tai M C, Huang S P, Su W C and Chen G F 2020 Flexible low-temperature polycrystalline silicon thin-film transistors Mater. Today Adv.5 100040

[53] [53] Heremans P, Tripathi A K, de Jamblinne de Meux A, Smits E C P, Hou B, Pourtois G and Gelinck G H 2016 Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications Adv. Mater.28 4266–82

[54] [54] Li S S and Thurber W R 1977 The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon Solid-State Electron.20 609–16

[55] [55] Fortunato E, Barquinha P and Martins R 2012 Oxide semiconductor thin-film transistors: a review of recent advances Adv. Mater.24 2945–86

[56] [56] Jeong S and Moon J 2012 Low-temperature, solution-processed metal oxide thin film transistors J. Mater. Chem.22 1243–50

[57] [57] Borkar S and Chien A A 2011 The future of microprocessors Commun. ACM54 67–77

[58] [58] Bohr M 2007 A 30 year retrospective on Dennard's MOSFET scaling paper IEEE J. Solid-State Circuits12 11–13

[59] [59] Skotnicki T, Hutchby J A, King T J, Wong H S P and Boeuf F 2005 The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance IEEE Circuits Devices Mag.21 16–26

[60] [60] Haensch W, Nowak E J, Dennard R H, Solomon P M, Bryant A, Dokumaci O H, Kumar A, Wang X, Johnson J B and Fischetti M V 2006 Silicon CMOS devices beyond scaling IBM J. Res. Dev.50 339–61

[61] [61] Ito T and Okazaki S 2000 Pushing the limits of lithography Nature406 1027–31

[62] [62] Schaller R R 1997 Moore's law: past, present and future IEEE spectrum34 52–59

[63] [63] Thompson S E and Parthasarathy S 2006 Moore's law: the future of Si microelectronics Mater. Today9 20–25

[64] [64] Abe H, Kato H and Baba T 2011 Specific heat capacity measurement of single-crystalline silicon as new reference material Jpn. J. Appl. Phys.50 11RG01

[65] [65] Rostami A, Heidarzadeh H, Baghban H, Dolatyari M and Rasooli H 2013 Thermal stability analysis of concentrating single-junction silicon and SiC-based solar cells J. Optoelectron. Adv. Mater.15 1–3

[66] [66] Sekitani T and Someya T 2010 Stretchable, large-area organic electronics Adv. Mater.22 2228–46

[67] [67] Zumeit A, Dahiya A S, Christou A, Shakthivel D and Dahiya R 2021 Direct roll transfer printed silicon nanoribbon arrays based high-performance flexible electronics npj Flex. Electron.5 18

[68] [68] Ghoneim M T, Kutbee A, Ghodsi Nasseri F, Bersuker G and Hussain M M 2014 Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric Appl. Phys. Lett.104 234104

[69] [69] Wolfstirn K B 1960 Hole and electron mobilities in doped silicon from radiochemical and conductivity measurements J. Phys. Chem. Solids16 279–84

[70] [70] Backenstoss G 1957 Conductivity mobilities of electrons and holes in heavily doped silicon Phys. Rev.108 1416–9

[71] [71] Nakatsugawa H, Okamoto Y, Kawahara T and Yamaguchi S 2014 Electric current dependence of a self-cooling device consisting of silicon wafers connected to a power MOSFET J. Electron. Mater.43 1757–67

[72] [72] Peng F, Su Y Y, Zhong Y L, Fan C H, Lee S T and He Y 2014 Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy Acc. Chem. Res.47 612–23

[73] [73] Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N and Sailor M J 2009 Biodegradable luminescent porous silicon nanoparticles for in vivo applications Nat. Mater.8 331–6

[74] [74] Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F and Wang Z L 2018 Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing Nat. Commun.9 244

[75] [75] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature529 509–14

[76] [76] Chung H U et al 2019 Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care Science363 eaau0780

[77] [77] Sang M Y et al 2022 Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision Adv. Mater.34 2105865

[78] [78] Cho Y U et al 2022 Ultra-low cost, facile fabrication of transparent neural electrode array for electrocorticography with photoelectric artifact-free optogenetics Adv. Funct. Mater.32 2105568

[79] [79] Lee J Y et al 2022 Foldable three dimensional neural electrode arrays for simultaneous brain interfacing of cortical surface and intracortical multilayers npj Flex. Electron.6 86

[80] [80] Park J et al 2023 A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations Sci. Adv.9 eadi8918

[81] [81] Kim K et al 2023 Fully implantable and battery-free wireless optoelectronic system for modulable cancer therapy and real-time monitoring npj Flex. Electron.7 41

[82] [82] Yu H W, Li H, Sun X D and Pan L J 2023 Biomimetic flexible sensors and their applications in human health detection Biomimetics8 293

[83] [83] Li H, Yu H W, Wu D, Sun X D and Pan L J 2023 Recent advances in bioinspired vision sensor arrays based on advanced optoelectronic materials APL Mater.11 080601

[84] [84] Zhang K et al 2017 Origami silicon optoelectronics for hemispherical electronic eye systems Nat. Commun.8 1782

[85] [85] Wang W C et al 2023 Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin Science380 735–42

[86] [86] Shen Z Q, Zhang Z L, Zhang N B, Li J H, Zhou P W, Hu F Q, Rong Y, Lu B Y and Gu G Y 2022 High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines Adv. Mater.34 2203650

[87] [87] Hegde C, Su J T, Tan J M R, He K, Chen X D and Magdassi S 2023 Sensing in soft robotics ACS Nano17 15277–307

[88] [88] Li L R D et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy7 708–17

[89] [89] Kim T S, Kim H J, Han J H, Choi W J and Yu K J 2022 Flexible InGaP/GaAs tandem solar cells encapsulated with ultrathin thermally grown silicon dioxide as a permanent water barrier and an antireflection coating ACS Appl. Energy Mater.5 227–33

[90] [90] Gao L, Chao L F, Hou M H, Liang J, Chen Y H, Yu H D and Huang W 2019 Flexible, transparent nanocellulose paper-based perovskite solar cells npj Flex. Electron.3 4

[91] [91] Wei D et al 2022 Ultra-flexible and foldable gel polymer lithium–ion batteries enabling scalable production Mater. Today Energy23 100889

[92] [92] Gao R H et al 2022 Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries Adv. Funct. Mater.32 2110313

[93] [93] Hong S, Lee J, Do K, Lee M, Kim J H, Lee S and Kim D H 2017 Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices Adv. Funct. Mater.27 1704353

[94] [94] Cheng Y, Zhu W D, Lu X F and Wang C 2022 Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing Nano Energy98 107229

[95] [95] Kang H 2021 Crystalline silicon vs. amorphous silicon: the significance of structural differences in photovoltaic applications IOP Conf. Ser.: Earth Environ. Sci.726 012001

[96] [96] Karakosta C, Pappas C, Marinakis V and Psarras J 2013 Renewable energy and nuclear power towards sustainable development: characteristics and prospects Renew. Sustain. Energy Rev.22 187–97

[97] [97] Pedersen A, Pizzagalli L and Jnsson H 2017 Optimal atomic structure of amorphous silicon obtained from density functional theory calculations New J. Phys.19 063018

[98] [98] Elbrecht L and Binder J 1999 The mechanical properties of thin polycrystalline silicon films as function of deposition and doping conditions Sens. Mater.11 163–79

[99] [99] Amus M and Altenbach H 2023 Elastic properties of polycrystalline silicon: experimental findings, effective estimates, and their relations Continuum Mech. Thermodyn.35 595–624

[100] [100] Allred C L, Yuan X L, Bazant M Z and Hobbs L W 2004 Elastic constants of defected and amorphous silicon with the environment-dependent interatomic potential Phys. Rev. B 70 134113

[101] [101] Gaspar J, Paul O, Chu V and Joao P C 2007 Mechanical properties and reliability of amorphous vs. polycrystalline silicon thin films MRS Online Proc. Lib.1066 10661504

[102] [102] Masolin A, Bouchard P O, Martini R and Bernacki M 2013 Thermo-mechanical and fracture properties in single-crystal silicon J. Mater. Sci.48 979–88

[103] [103] Treacy M M J and Borisenko K B 2012 The local structure of amorphous silicon Science335 950–3

[104] [104] Fisher G, Seacrist M R and Standley R W 2012 Silicon crystal growth and wafer technologies Proc. IEEE100 1454–74

[105] [105] Chae J H, Lee J Y and Kang S W 1999 Measurement of thermal expansion coefficient of poly-Si using microgauge sensors Sens. Actuators A 75 222–9

[106] [106] Chen B W et al 2017 Surface engineering of polycrystalline silicon for long-term mechanical stress endurance enhancement in flexible low-temperature poly-Si thin-film transistors ACS Appl. Mater. Interfaces9 11942–9

[107] [107] Yokota T et al 2020 A conformable imager for biometric authentication and vital sign measurement Nat. Electron.3 113–21

[108] [108] Gao X Y, Lin L, Liu Y C and Huang X Q 2015 LTPS TFT process on polyimide substrate for flexible AMOLED J. Disp. Technol.11 666–9

[109] [109] Caro M A 2023 Machine learning based modeling of disordered elemental semiconductors: understanding the atomic structure of a-Si and a-C Semicond. Sci. Technol.38 043001

[110] [110] Deringer V L, Bernstein N, Bartk A P, Cliffe M J, Kerber R N, Marbella L E, Grey C P, Elliott S R and Csnyi G 2018 Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics J. Phys. Chem. Lett.9 2879–85

[111] [111] Juka G, Koka J, Arlauskas K and Jukonis G 1990 Electron drift mobility in a-Si:H under extremely high electric field Solid State Commun.75 531–3

[112] [112] von Roedern B 2004 Photovoltaic materials, physics of Encyclopedia of Energy ed C J Cleveland (Elsevier) pp 47–59

[113] [113] Du M C, Jia R, Li X, Zheng X H, Gao Z B, Chen J W, Qiu P, Liu H, Yang J and Kong D L 2023 Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells Sol. Energy Mater. Sol. Cells262 112555

[114] [114] Zhang C et al 2017 Efficient and flexible thin film amorphous silicon solar cells on nanotextured polymer substrate using sol–gel based nanoimprinting method Adv. Funct. Mater.27 1604720

[115] [115] Choi S W, Park J H, Seo J W, Mun C, Kim Y, Song P, Shin M and Kwon J D 2023 Flexible and transparent thin-film light-scattering photovoltaics about fabrication and optimization for bifacial operation npj Flex. Electron.7 17

[116] [116] Yi C H, Li W M, Shi S, He K, Ma P C, Chen M and Yang C L 2020 High-temperature-resistant and colorless polyimide: preparations, properties, and applications Sol. Energy195 340–54

[117] [117] You B H, Lee B J, Han S Y, Takahashi S, Berkeley B H, Kim N D and Kim S S 2009 Touch-screen panel integrated into 12.1-in. a-Si:H TFT-LCD J. Soc. Inf. Disp.17 87–94

[118] [118] Sarma K R 2009 Amorphous silicon: flexible backplane and display application Flexible Electronics: Materials and Applications ed W S Wong and A Salleo (Springer) pp 75–106

[119] [119] Wang P P, Hu M M, Wang H, Chen Z, Feng Y P, Wang J Q, Ling W and Huang Y 2020 The evolution of flexible electronics: from nature, beyond nature, and to nature Adv. Sci.7 2001116

[120] [120] Song Y M et al 2013 Digital cameras with designs inspired by the arthropod eye Nature497 95–99

[121] [121] Lee Y K et al 2017 Chemical sensing systems that utilize soft electronics on thin elastomeric substrates with open cellular designs Adv. Funct. Mater.27 1605476

[122] [122] Truong T A et al 2023 Engineering route for stretchable, 3D microarchitectures of wide bandgap semiconductors for biomedical applications Adv. Funct. Mater.33 2211781

[123] [123] Kim D H et al 2011 Epidermal electronics Science333 838–43

[124] [124] Kim T et al 2022 Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces Nat. Commun.13 5815

[125] [125] Sang M Y, Kim K, Shin J and Yu K J 2022 Ultra-thin flexible encapsulating materials for soft bio-integrated electronics Adv. Sci.9 2202980

[126] [126] Webb R C et al 2013 Ultrathin conformal devices for precise and continuous thermal characterization of human skin Nat. Mater.12 938–44

[127] [127] Song E M et al 2019 Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration Proc. Natl Acad. Sci. USA116 15398–406

[128] [128] Fang H et al 2016 Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems Proc. Natl Acad. Sci. USA113 11682–7

[129] [129] Song E M et al 2018 Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems ACS Nano12 10317–26

[130] [130] Logothetidis S 2008 Flexible organic electronic devices: materials, process and applications Mater. Sci. Eng.152 96–104

[131] [131] Park J, Heo S, Park K, Song M H, Kim J Y, Kyung G, Ruoff R S, Park J U and Bien F 2017 Research on flexible display at Ulsan national institute of science and technology npj Flex. Electron.1 9

[132] [132] Liu K, Ouyang B, Guo X J, Guo Y L and Liu Y Q 2022 Advances in flexible organic field-effect transistors and their applications for flexible electronics npj Flex. Electron.6 1

[133] [133] Zumeit A, Dahiya A S, Christou A and Dahiya R 2022 High-performance p-channel transistors on flexible substrate using direct roll transfer stamping Jpn. J. Appl. Phys.61 SC1042

[134] [134] Arjmand T, Legallais M, Nguyen T T T, Serre P, Vallejo-Perez M, Morisot F, Salem B and Ternon C 2022 Functional devices from bottom-up silicon nanowires: a review Nanomaterials12 1043

[135] [135] Biswas A, Bayer I S, Biris A S, Wang T, Dervishi E and Faupel F 2012 Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects Adv. Colloid Interface Sci.170 2–27

[136] [136] Sun Y, Khang D Y, Hua F, Hurley K, Nuzzo R G and Rogers J A 2005 Photolithographic route to the fabrication of micro/nanowires of III–V semiconductors Adv. Funct. Mater.15 30–40

[137] [137] Pennelli G 2015 Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives Eur. Phys. J. B 88 121

[138] [138] Sun Y G, Kim H S, Menard E, Kim S, Adesida I and Rogers J A 2006 Printed arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on plastic substrates Small2 1330–4

[139] [139] Mack S, Meitl M A, Baca A J, Zhu Z T and Rogers J A 2006 Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers Appl. Phys. Lett.88 213101

[140] [140] Sun Y G and Rogers J A 2004 Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates Nano Lett.4 1953–9

[141] [141] Chang H K, Wang X L, Aroonyadet N, Zhang R, Song Y, Datar R, Cote R, Thompson M and Zhou C W 2013 Top-down fabricated polysilicon nanoribbon biosensor chips for cancer diagnosis MRS Online Proc. Lib.1569 213–8

[142] [142] Fu X X, Cai J X, Zhang X, Li W D, Ge H X and Hu Y 2018 Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications Adv. Drug Deliv. Rev.132 169–87

[143] [143] Za'bah N F, Kwa K S K, Bowen L, Mendis B and O'Neill A 2012 Top-down fabrication of single crystal silicon nanowire using optical lithography J. Appl. Phys.112 024309

[144] [144] Viventi J et al 2011 Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo Nat. Neurosci.14 1599–605

[145] [145] Kim J et al 2014 Stretchable silicon nanoribbon electronics for skin prosthesis Nat. Commun.5 5747

[146] [146] Yu K J et al 2016 Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex Nat. Mater.15 782–91

[147] [147] Ko G et al 2020 Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants NPG Asia Mater.12 71

[148] [148] McAlpine M C, Ahmad H, Wang D W and Heath J R 2007 Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors Nat. Mater.6 379–84

[149] [149] Kang K, Sang M Y, Xu B X and Yu K J 2023 Fabrication of gold-doped crystalline-silicon nanomembrane-based wearable temperature sensor STAR Protocols4 101925

[150] [150] Ko H C, Baca A J and Rogers J A 2006 Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers Nano Lett.6 2318–24

[151] [151] Baca A J et al 2010 Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs Energy Environ. Sci.3 208–11

[152] [152] Kim T I, Hwan Jung Y, Chung H J, Jun Yu K, Ahmed N, Corcoran C J, Suk Park J, Hun Jin S and Rogers J A 2013 Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers Appl. Phys. Lett.102 182104

[153] [153] Yoon J et al 2008 Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs Nat. Mater.7 907–15

[154] [154] Kim C, Ahn H and Ji T 2020 Flexible pressure sensors based on silicon nanowire array built by metal-assisted chemical etching IEEE Electron Device Lett.41 1233–6

[155] [155] Qi Y Y, Wang Z, Zhang M L, Yang F H and Wang X D 2013 A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching J. Phys. Chem. C 117 25090–6

[156] [156] Han H, Huang Z P and Lee W 2014 Metal-assisted chemical etching of silicon and nanotechnology applications Nano Today9 271–304

[157] [157] Sharma M, Pudasaini P R, Ruiz-Zepeda F, Elam D and Ayon A A 2014 Ultrathin, flexible organic–inorganic hybrid solar cells based on silicon nanowires and PEDOT: PSS ACS Appl. Mater. Interfaces6 4356–63

[158] [158] Mizushima I, Sato T, Taniguchi S and Tsunashima Y 2000 Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure Appl. Phys. Lett.77 3290–2

[159] [159] Depauw V, Qiu Y, Van Nieuwenhuysen K, Gordon I and Poortmans J 2011 Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells Prog. Photovolt., Res. Appl.19 844–50

[160] [160] Sudoh K, Hiruta R and Kuribayashi H 2013 Shape evolution of high aspect ratio holes on Si(001) during hydrogen annealing J. Appl. Phys.114 183512

[161] [161] Sudoh K, Iwasaki H, Hiruta R, Kuribayashi H and Shimizu R 2009 Void shape evolution and formation of silicon-on-nothing structures during hydrogen annealing of hole arrays on Si (001) J. Appl. Phys.105 083536

[162] [162] Bedell S W, Shahrjerdi D, Hekmatshoar B, Fogel K, Lauro P A, Ott J A, Sosa N and Sadana D 2012 Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies IEEE J. Photovolt.2 141–7

[163] [163] Saha S et al 2013 Single heterojunction solar cells on exfoliated flexible 25 m thick mono-crystalline silicon substrates Appl. Phys. Lett.102 163904

[164] [164] Martini R, Gonzalez M, Dross F, Masolin A, Vaes J, Frederickx D and Poortmans J 2012 Epoxy-induced spalling of silicon Energy Proc.27 567–72

[165] [165] Bedell S W, Fogel K, Lauro P, Shahrjerdi D, Ott J A and Sadana D 2013 Layer transfer by controlled spalling J. Phys. D: Appl. Phys.46 152002

[166] [166] Zhai Y J, Mathew L, Rao R, Xu D W and Banerjee S K 2012 High-performance flexible thin-film transistors exfoliated from bulk wafer Nano Lett.12 5609–15

[167] [167] Lasky J B, Stiffler S R, White F R and Abernathey J R 1985 Silicon-on-insulator (SOI) by bonding and ETCH-back 1985 Int. Electron Devices Meeting (IEEE) pp 684–7

[168] [168] Liang H M, Liu M F, Liu S, Xu D H and Xiong B 2018 The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication J. Micromech. Microeng.28 015005

[169] [169] Baraban L, Ibarlucea B, Baek E and Cuniberti G 2019 Hybrid silicon nanowire devices and their functional diversity Adv. Sci.6 1900522

[170] [170] Muroi M, Otani M and Habuka H 2021 Boron-silicon film chemical vapor deposition using boron trichloride, dichlorosilane and monomethylsilane gases ECS J. Solid State Sci. Technol.10 064006

[171] [171] Behroudj A, Geiger D and Strehle S 2019 Epitaxial bottom-up growth of silicon nanowires on oxidized silicon by alloy-catalyzed gas-phase synthesis Nano Lett.19 7895–900

[172] [172] Yu J L, Yang J, Feng X J, Jia H, Wang J L and Lu W 2014 Uniform carbon coating on silicon nanoparticles by dynamic CVD process for electrochemical lithium storage Ind. Eng. Chem. Res.53 12697–704

[173] [173] Gao Y et al 2016 High-performance flexible thin-film transistors based on single-crystal-like silicon epitaxially grown on metal tape by roll-to-roll continuous deposition process ACS Appl. Mater. Interfaces8 29565–72

[174] [174] Song X P et al 2022 Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates Adv. Sci.9 2105623

[175] [175] Liu W Z et al 2023 Flexible solar cells based on foldable silicon wafers with blunted edges Nature617 717–23

[176] [176] Liu X H, Zhang J, Si W P, Xi L X, Eichler B, Yan C L and Schmidt O G 2015 Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life ACS Nano9 1198–205

[177] [177] Wu Z Z, Li C Y, Hartings J A, Narayan R and Ahn C 2016 Polysilicon thin film developed on flexible polyimide for biomedical applications J. Microelectromech. Syst.25 585–92

[178] [178] Wu Z Z, Li C Y, Hartings J, Ghosh S, Narayan R and Ahn C 2017 Polysilicon-based flexible temperature sensor for brain monitoring with high spatial resolution J. Micromech. Microeng.27 025001

[179] [179] Wu Z Z and Ahn C H 2017 A wearable pressure and temperature sensor array using polysilicon thin film on polyimide 2017 19th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE) pp 1025–8

[180] [180] Misra S, Yu L W, Chen W H, Foldyna M and Cabarrocas P R I 2014 A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells J. Phys. D: Appl. Phys.47 393001

[181] [181] Ni L, Jacques E, Rogel R, Salan A C, Pichon L and Wenga G 2012 VLS silicon nanowires based resistors for chemical sensor applications Proc. Eng.47 240–3

[182] [182] Puglisi R A, Bongiorno C, Caccamo S, Fazio E, Mannino G, Neri F, Scalese S, Spucches D and La Magna A 2019 Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm ACS Omega4 17967–71

[183] [183] Moiz S A, Alahmadi A N M and Aljohani A J 2020 Design of silicon nanowire array for PEDOT: PSS-silicon nanowire-based hybrid solar cell Energies13 3797

[184] [184] Verhaverbeke S, Teerlinck I, Vinckier C, Stevens G, Cartuyvels R and Heyns M M 1994 The etching mechanisms of SiO2 in hydrofluoric acid J. Electrochem. Soc.141 2852–7

[185] [185] Fahey P M, Griffin P B and Plummer J D 1989 Point defects and dopant diffusion in silicon Rev. Mod. Phys.61 289–384

[186] [186] Mathiot D and Pfister J C 1984 Dopant diffusion in silicon: a consistent view involving nonequilibrium defects J. Appl. Phys.55 3518–30

[187] [187] Barri C et al 2021 Engineering of the spin on dopant process on silicon on insulator substrate Nanotechnology32 025303

[188] [188] Slaoui A, Hartiti B, Muller J C, Stuck R, Loghmarti M and Siffert P 1991 Rapid thermal diffusion of phosphorus into silicon from doped oxide films (solar cell manufacture) Proc. 22nd IEEE Photovoltaic Specialists Con. (IEEE) pp 445–9

[189] [189] Huang Y X et al 2023 Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities Nat. Biomed. Eng.7 486–98

[190] [190] Hernandez H L et al 2014 Triggered transience of metastable poly(phthalaldehyde) for transient electronics Adv. Mater.26 7637–42

[191] [191] Chen Y, Li H and Li M 2012 Flexible and tunable silicon photonic circuits on plastic substrates Sci. Rep.2 622

[192] [192] Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G and Rogers J A 2006 Transfer printing by kinetic control of adhesion to an elastomeric stamp Nat. Mater.5 33–38

[193] [193] Hsia K J, Huang Y, Menard E, Park J U, Zhou W, Rogers J and Fulton J M 2005 Collapse of stamps for soft lithography due to interfacial adhesion Appl. Phys. Lett.86 154106

[194] [194] Huang Y Y, Zhou W X, Hsia K J, Menard E, Park J U, Rogers J A and Alleyne A G 2005 Stamp collapse in soft lithography Langmuir21 8058–68

[195] [195] Roberts A D 1979 Looking at rubber adhesion Rubber Chem. Technol.52 23–42

[196] [196] Hunter K H, Rodriguez J M G and Becker N M 2022 A review of research on the teaching and learning of chemical bonding J. Chem. Educ.99 2451–64

[197] [197] Schn C F, van Bergerem S, Mattes C, Yadav A, Grohe M, Kobbelt L and Wuttig M 2022 Classification of properties and their relation to chemical bonding: essential steps toward the inverse design of functional materials Sci. Adv.8 eade0828

[198] [198] Park J K, Zhang Y, Xu B X and Kim S 2021 Pattern transfer of large-scale thin membranes with controllable self-delamination interface for integrated functional systems Nat. Commun.12 6882

[199] [199] Wie D S, Zhang Y, Kim M K, Kim B, Park S, Kim Y J, Irazoqui P P, Zheng X L, Xu B X and Lee C H 2018 Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics Proc. Natl Acad. Sci. USA115 E7236–E7244

[200] [200] Zhang Y, Liu Q C and Xu B X 2017 Liquid-assisted, etching-free, mechanical peeling of 2D materials Extreme Mech. Lett.16 33–40

[201] [201] Zhang Y, Yin M T, Baek Y, Lee K, Zangari G, Cai L H and Xu B X 2020 Capillary transfer of soft films Proc. Natl Acad. Sci. USA117 5210–6

[202] [202] Lee S M, Li W G, Dhar P, Malyk S, Wang Y, Lee W, Benderskii A and Yoon J 2015 High-performance flexible nanostructured silicon solar modules with plasmonically engineered upconversion medium Adv. Energy. Mater.5 1500761

[203] [203] Iqra M, Anwar F, Jan R and Mohammad M A 2022 A flexible piezoresistive strain sensor based on laser scribed graphene oxide on polydimethylsiloxane Sci. Rep.12 4882

[204] [204] Takamatsu S, Goto S, Yamamoto M, Yamashita T, Kobayashi T and Itoh T 2019 Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter Sci. Rep.9 1893

[205] [205] Rimstidt J D and Barnes H L 1980 The kinetics of silica-water reactions Geochim. Cosmochim. Acta44 1683–99

[206] [206] Morita M, Ohmi T, Hasegawa E, Kawakami M and Ohwada M 1990 Growth of native oxide on a silicon surface J. Appl. Phys.68 1272–81

[207] [207] Hwang S W et al 2012 A physically transient form of silicon electronics Science337 1640–4

[208] [208] Levine R D 2009 Molecular Reaction Dynamics (Cambridge University Press)

[209] [209] Yu B J and Qian L M 2013 Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon Nanoscale Res. Lett.8 137

[210] [210] ysko J M 2003 Anisotropic etching of the silicon crystal-surface free energy model Mater. Sci. Semicond. Process.6 235–41

[211] [211] Seidel H, Csepregi L, Heuberger A and Baumgrtel H 1990 Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers J. Electrochem. Soc.137 3612–26

[212] [212] Laermer F, Franssila S, Sainiemi L and Kolari K 2015 Deep reactive ion etching Handbook of Silicon Based MEMS Materials and Technologies 2nd edn, ed M Tilli, T Motooka, V M Airaksinen, S Franssila, M Paulasto-Krckel and V Lindroos (William Andrew Publishing) pp 444–69

[213] [213] Yunkin V A, Fischer D and Voges E 1994 Highly anisotropic selective reactive ion etching of deep trenches in silicon Microelectron. Eng.23 373–6

[214] [214] Knotter D M 2010 The chemistry of wet etching Handbook of Cleaning in Semiconductor Manufacturing: Fundamental and Applications ed K A Reinhardt and R F Reidy (Wiley) pp 95–141

[215] [215] Tabata O, Asahi R, Funabashi H, Shimaoka K and Sugiyama S 1992 Anisotropic etching of silicon in TMAH solutions Sens. Actuators A 34 51–57

[216] [216] Lin L J H and Chiou Y P 2012 Improving thin-film crystalline silicon solar cell efficiency with back surface field layer and blaze diffractive grating Sol. Energy86 1485–90

[217] [217] Munzer K A, Holdermann K T, Schlosser R E and Sterk S 1999 Thin monocrystalline silicon solar cells IEEE Trans. Electron Devices46 2055–61

[218] [218] Mularso K T 2018 Analysis of back surface field (BSF) performance in P-type and N-type monocrystalline silicon wafer E3S Web Conf.43 01006

[219] [219] Li X L 2012 Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics Curr. Opin. Solid State Mater. Sci.16 71–81

[220] [220] Kheyraddini Mousavi B, Behzadirad M, Silani Y, Karbasian F, Kheyraddini Mousavi A and Mohajerzadeh S 2019 Metal-assisted chemical etching of silicon and achieving pore sizes as small as 30 nm by altering gold thickness J. Vac. Sci. Technol. A 37 061402

[221] [221] Song A, Yun S, Lokhande V and Ji T 2016 Rate controlled metal assisted chemical etching to fabricate vertical and uniform Si nanowires Proc. SPIE9759 165–9

[222] [222] Garnett E C, Brongersma M L, Cui Y and McGehee M D 2011 Nanowire solar cells Annu. Rev. Mater. Res.41 269–95

[223] [223] Bai F, Li M C, Song D D, Yu H, Jiang B and Li Y F 2012 One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature J. Solid State Chem.196 596–600

[224] [224] Kim H, Jang H, Kim B, Kim M K, Wie D S, Lee H S, Kim D R and Lee C H 2018 Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules Sci. Adv.4 eaau6972

[225] [225] Chiappini C, De Rosa E, Martinez J O, Liu X, Steele J, Stevens M M and Tasciotti E 2015 Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization Nat. Mater.14 532–9

[226] [226] Chiappini C, Martinez J O, De Rosa E, Almeida C S, Tasciotti E and Stevens M M 2015 Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface ACS Nano9 5500–9

[227] [227] Huang Z P, Geyer N, Werner P, De Boor J and Gsele U 2011 Metal-assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gsele Adv. Mater.23 285–308

[228] [228] Fu Y N, Jin Z G, Liu G Q and Yin Y X 2009 Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method Synth. Met.159 1744–50

[229] [229] Huo C L, Wang J, Fu H X, Li X L, Yang Y, Wang H, Mateen A, Farid G and Peng K Q 2020 Metal-assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application Adv. Funct. Mater.30 2005744

[230] [230] Zhang J, Zhang Y N, Song T, Shen X L, Yu X G, Lee S T, Sun B Q and Jia B H 2017 High-performance ultrathin organic–inorganic hybrid silicon solar cells via solution-processed interface modification ACS Appl. Mater. Interfaces9 21723–9

[231] [231] Kim H et al 2020 Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy ACS Nano14 7227–36

[232] [232] Park S, Lee Y H, Wi J S and Oh J 2016 A semitransparent and flexible single crystal Si thin film: silicon on nothing (SON) revisited ACS Appl. Mater. Interfaces8 18962–8

[233] [233] Leng X D, Wang C Y and Yuan Z S 2020 Progress in metal-assisted chemical etching of silicon nanostructures Proc. CIRP89 26–32

[234] [234] Wang S, Weil B D, Li Y B, Wang K X, Garnett E, Fan S H and Cui Y 2013 Large-area free-standing ultrathin single-crystal silicon as processable materials Nano Lett.13 4393–8

[235] [235] Pudasaini P R, Sharma M, Ruiz-Zepeda F and Ayon A A 2014 Efficiency improvement of a nanostructured polymer solar cell employing atomic layer deposited Al2O3 as a passivation layer Microelectron. Eng.119 6–10

[236] [236] Jeong S, McGehee M D and Cui Y 2013 All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency Nat. Commun.4 2950

[237] [237] Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A and Ayon A A 2013 High efficiency hybrid silicon nanopillar–polymer solar cells ACS Appl. Mater. Interfaces5 9620–7

[238] [238] Oh J, Yuan H C and Branz H M 2012 An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures Nat. Nanotechnol.7 743–8

[239] [239] Zhang F T, Liu D, Zhang Y F, Wei H X, Song T and Sun B Q 2013 Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell ACS Appl. Mater. Interfaces5 4678–84

[240] [240] He J, Gao P Q, Ling Z H, Ding L, Yang Z H, Ye J C and Cui Y 2016 High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation ACS Nano10 11525–31

[241] [241] Abbott J, Ye T Y, Ham D and Park H 2018 Optimizing nanoelectrode arrays for scalable intracellular electrophysiology Acc. Chem. Res.51 600–8

[242] [242] Poortmans J and Arkhipov V 2006 Thin Film Solar Cells: Fabrication, Characterization and Applications (Wiley)

[243] [243] Reuter M, Brendle W, Tobail O and Werner J H 2009 50 m thin solar cells with 17.0% efficiency Sol. Energy Mater. Sol. Cells93 704–6

[244] [244] Depauw V, Richard O, Bender H, Gordon I, Beaucarne G, Poortmans J, Mertens R and Celis J P 2008 Study of pore reorganisation during annealing of macroporous silicon structures for solar cell application Thin Solid Films516 6934–8

[245] [245] Depauw V, Gordon I, Beaucarne G, Poortmans J, Mertens R and Celis J P 2009 Innovative lift-off solar cell made of monocrystalline-silicon thin film by annealing of ordered macropores Phys. Status Solidi c 6 1750–3

[246] [246] Sato T, Mitsutake K, Mizushima I and Tsunashima Y 2000 Micro-structure transformation of silicon: a newly developed transformation technology for patterning silicon surfaces using the surface migration of silicon atoms by hydrogen annealing Jpn. J. Appl. Phys.39 5033–8

[247] [247] Lehmann V and Grning U 1997 The limits of macropore array fabrication Thin Solid Films297 13–17

[248] [248] Chou S Y, Krauss P R and Renstrom P J 1996 Nanoimprint lithography J. Vac. Sci. Technol. B 14 4129–33

[249] [249] Depauw V, Gordon I, Beaucarne G, Poortmans J, Mertens R and Celis J P 2009 Large-area monocrystalline silicon thin films by annealing of macroporous arrays: understanding and tackling defects in the material J. Appl. Phys.106 033516

[250] [250] Hernndez D, Trifonov T, Garn M and Alcubilla R 2013 “Silicon millefeuille”: from a silicon wafer to multiple thin crystalline films in a single step Appl. Phys. Lett.102 172102

[251] [251] Jang B, Kim K S, Kim J H, Choi H J, Park H S and Lee H J 2011 Rate-dependent adhesion between a spherical PDMS stamp and silicon substrate for a transfer-assembly process J. Adhes.87 744–54

[252] [252] Grrn P, Sander M, Meyer J, Krger M, Becker E, Johannes H H, Kowalsky W and Riedl T 2006 Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes Adv. Mater.18 738–41

[253] [253] Baca A J, Ahn J H, Sun Y G, Meitl M, Menard E, Kim H S, Choi W, Kim D H, Huang Y N and Rogers J 2008 Semiconductor wires and ribbons for high-performance flexible electronics Angew. Chem., Int. Ed.47 5524–42

[254] [254] Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P D, Zhou C W, Marks T J and Janes D B 2007 Fabrication of fully transparent nanowire transistors for transparent and flexible electronics Nat. Nanotechnol.2 378–84

[255] [255] Ellmer K 2012 Past achievements and future challenges in the development of optically transparent electrodes Nat. Photon.6 809–17

[256] [256] Cheng C H, Lin Y H, Chang J H, Wu C I and Lin G R 2014 Semi-transparent Si-rich SixC1−x p–i–n photovoltaic solar cell grown by hydrogen-free PECVD RSC Adv.4 18397–405

[257] [257] Lawn B 1993 Fracture of Brittle Solids 2nd edn (Cambridge University Press) p 194

[258] [258] Hutchinson J W and Suo Z 1991 Mixed mode cracking in layered materials Adv. Appl. Mech.29 63–191

[259] [259] Khayyat M M 2021 Crystalline silicon spalling as a direct application of temperature effect on semiconductors' indentation Crystals11 1020

[260] [260] Lee Y H, Kim J and Oh J 2018 Wafer-scale ultrathin, single-crystal Si and GaAs photocathodes for photoelectrochemical hydrogen production ACS Appl. Mater. Interfaces10 33230–7

[261] [261] Chen S L, Dong Y, Liu T L and Li J H 2022 Waterproof, flexible field-effect transistors with submicron monocrystalline Si nanomembrane derived encapsulation for continuous pH sensing Biosens. Bioelectron.195 113683

[262] [262] Chiang C H et al 2020 Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates Sci. Transl. Med.12 eaay4682

[263] [263] Thornton J A and Hoffman D W 1977 Internal stresses in titanium, nickel, molybdenum, and tantalum films deposited by cylindrical magnetron sputtering J. Vac. Sci. Technol.14 164–8

[264] [264] Dennis J K and Such T E 1993 Nickel and Chromium Plating 3rd edn (Woodhead Publishing)

[265] [265] Shahrjerdi D and Bedell S W 2013 Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic Nano Lett.13 315–20

[266] [266] Suo Z G and Hutchinson J W 1989 Steady-state cracking in brittle substrates beneath adherent films Int. J. Solids Struct.25 1337–53

[267] [267] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A and Lewis N S 2010 Solar water splitting cells Chem. Rev.110 6446–73

[268] [268] Sharma S and Ghoshal S K 2015 Hydrogen the future transportation fuel: from production to applications Renew. Sustain. Energy Rev.43 1151–8

[269] [269] Oh I, Kye J and Hwang S 2012 Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode Nano Lett.12 298–302

[270] [270] Wang H P, Sun K, Noh S Y, Kargar A, Tsai M L, Huang M Y, Wang D L and He J H 2015 High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution Nano Lett.15 2817–24

[271] [271] Jung J Y, Park M J, Li X P, Kim J H, Wehrspohn R B and Lee J H 2015 High performance H2 evolution realized in 20 m-thin silicon nanostructured photocathodes J. Mater. Chem. A 3 9456–60

[272] [272] Hu S, Shaner M R, Beardslee J A, Lichterman M, Brunschwig B S and Lewis N S 2014 Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation Science344 1005–9

[273] [273] Kang D, Young J L, Lim H, Klein W E, Chen H D, Xi Y Z, Gai B J, Deutsch T G and Yoon J 2017 Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting Nat. Energy2 17043

[274] [274] Yu X G, Wang P, Li X Q and Yang D R 2012 Thin Czochralski silicon solar cells based on diamond wire sawing technology Sol. Energy Mater. Sol. Cells98 337–42

[275] [275] Chen K X, Liu Y Y, Wang X S, Zhang L J and Su X D 2015 Novel texturing process for diamond-wire-sawn single-crystalline silicon solar cell Sol. Energy Mater. Sol. Cells133 148–55

[276] [276] Lee Y H, Kim Y J, Han S M J, Song H E and Oh J 2016 Sub-5 m-thick spalled single crystal Si foils by decoupling crack initiation and propagation Appl. Phys. Lett.109 132101

[277] [277] Cho M et al 2023 Ultra-thin thermally grown silicon dioxide nanomembrane for waterproof perovskite solar cells J. Power Sources563 232810

[278] [278] Fang H et al 2017 Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology Nat. Biomed. Eng.1 0038

[279] [279] Yuen S M, Ma C C M, Chiang C L, Lin Y Y and Teng C C 2007 Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite J. Polym. Sci. A 45 3349–58

[280] [280] Zgheib E, Alhussein A, Slim M F, Khalil K and Franois M 2019 Multilayered models for determining the Young's modulus of thin films by means of impulse excitation technique Mech. Mater.137 103143

[281] [281] Kim Y H, Chaug Y S, Chou N J and Kim J 1987 Adhesion of titanium thin film to oxide substrates J. Vac. Sci. Technol. A 5 2890–3

[282] [282] Bhattacharya S, Datta A, Berg J M and Gangopadhyay S 2005 Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength J. Microelectromech. Syst.14 590–7

[283] [283] Grandbois M, Beyer M, Rief M, Clausen-Schaumann H and Gaub H E 1999 How strong is a covalent bond? Science283 1727–30

[284] [284] Zhou J W, Ellis A V and Voelcker N H 2010 Recent developments in PDMS surface modification for microfluidic devices Electrophoresis31 2–16

[285] [285] Berdichevsky Y, Khandurina J, Guttman A and Lo Y H 2004 UV/ozone modification of poly(dimethylsiloxane) microfluidic channels Sens. Actuators B 97 402–8

[286] [286] Knizikeviius R and Kopustinskas V 2004 Anisotropic etching of silicon in SF6 plasma Vacuum77 1–4

[287] [287] Alessandri A, D'Ercoli F, Petruzza P and Sciutti A 2022 Deep silicon etch Silicon Sensors and Actuators: The Feynman Roadmap ed B Vigna, P Ferrari, F F Villa, E Lasalandra and S Zerbini (Springer) pp 133–67

[288] [288] Van Toan N, Kubota T, Sekhar H, Samukawa S and Ono T 2014 Mechanical quality factor enhancement in a silicon micromechanical resonator by low-damage process using neutral beam etching technology J. Micromech. Microeng.24 085005

[289] [289] Levey A S and Coresh J 2012 Chronic kidney disease Lancet379 165–80

[290] [290] Chang E F 2015 Towards large-scale, human-based, mesoscopic neurotechnologies Neuron86 68–78

[291] [291] Hermes D, Miller K J, Noordmans H J, Vansteensel M J and Ramsey N F 2010 Automated electrocorticographic electrode localization on individually rendered brain surfaces J. Neurosci. Methods185 293–8

[292] [292] Song E M, Li J H, Won S M, Bai W B and Rogers J A 2020 Materials for flexible bioelectronic systems as chronic neural interfaces Nat. Mater.19 590–603

[293] [293] Fengel C V, Yu S Y, Kim J, Johnston M L and Minot E D 2023 Multiplexed detection of spike patterns using active graphene neurosensors 2023 IEEE Int. Symp. on Circuits and Systems (ISCAS) (IEEE) pp 1–5

[294] [294] Bork A, Laboda K and Bonyr A 2021 PDMS bonding technologies for microfluidic applications: a review Biosensors11 292

[295] [295] Teixeira V, Carneiro J, Carvalho P, Silva E, Azevedo S and Batista C 2011 High barrier plastics using nanoscale inorganic films Multifunctional and Nanoreinforced Polymers for Food Packaging ed J M Lagarn (Woodhead Publishing) pp 285–315

[296] [296] Tsai C C, Anderson G B and Thompson R 1991 Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma J. Non-Cryst. Solids137–8 673–6

[297] [297] Dahmen K H 2003 Chemical Vapor Deposition. In Encyclopedia of Physical Science and Technology 3rd edn, ed R A Meyers (Academic) pp 787–808

[298] [298] Matsumura H, Umemoto H and Masuda A 2004 Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon J. Non-Cryst. Solids338–40 19–26

[299] [299] Yamazaki S, Wada K and Taniguchi I 1970 Silicon nitride prepared by the SiH4-NH3 reaction with catalysts Jpn. J. Appl. Phys.9 1467–77

[300] [300] Hsiao W C, Liu C P and Wang Y L 2008 Thermal properties of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor deposition J. Phys. Chem. Sol.69 648–52

[301] [301] Yang R F, Lee C H, Cui B and Sazonov A 2018 Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting applications Mater. Sci. Eng.229 1–5

[302] [302] Cariou R et al 2016 Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process Prog. Photovolt., Res. Appl.24 1075–84

[303] [303] Hong J E, Lee Y, Mo S I, Jeong H S, An J H, Song H E, Oh J, Bang J, Oh J H and Kim K H 2021 Fully bottom-up waste-free growth of ultrathin silicon wafer via self-releasing seed layer Adv. Mater.33 2103708

[304] [304] Jo H, Yang J H, Lee J H, Lim J W, Lee J, Shin M, Ahn J H and Kwon J D 2018 Transparent bifacial a-Si:H solar cells employing silver oxide embedded transparent rear electrodes for improved transparency Sol. Energy170 940–6

[305] [305] Chang S and Sivoththaman S 2006 Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer J. Micromech. Microeng.16 1307–13

[306] [306] Kim Y, Massoud H Z and Fair R B 1989 The effect of ion-implantation damage on dopant diffusion in silicon during shallow-junction formation J. Electron. Mater.18 143–50

[307] [307] Demchenko I N et al 2020 Effect of rapid thermal annealing on damage of silicon matrix implanted by low-energy rhenium ions J. Alloys Compd.846 156433

[308] [308] Liu X, Pohl R O, Asher S and Crandall R S 1998 Contamination of silicon during ion-implantation and annealing J. Non-Cryst. Solids227–30 407–10

[309] [309] Alpuim P, Chu V and Conde J P 2003 Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition J. Vac. Sci. Technol. A 21 1048–54

[310] [310] Pang C L, Cui H, Yang G W and Wang C X 2013 Flexible transparent and free-standing silicon nanowires paper Nano Lett.13 4708–14

[311] [311] Cui H, Li S Y, Deng S Z, Chen H J and Wang C X 2017 Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection ACS Sens.2 386–93

[312] [312] Park S, Lee J and Ko H 2017 Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film ACS Appl. Mater. Interfaces9 44088–95

[313] [313] Ablekim T et al 2020 Thin-film solar cells with 19% efficiency by thermal evaporation of CdSe and CdTe ACS Energy Lett.5 892–6

[314] [314] Wang Z P and Zhang Z M 2016 Electron beam evaporation deposition Advanced Nano Deposition Methods ed Y Lin and X Chen (Wiley) pp 33–58

[315] [315] Depla D, Mahieu S and Greene J E 2010 Sputter deposition processes Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology 3rd edn, ed P M Martin (William Andrew) pp 253–96

[316] [316] Jiao X Q, Zhang R, Yang J, Zhong H, Shi Y, Chen X Y and Shi J 2014 Characterizations of evaporated -Si thin films for MEMS application Appl. Phys. A 116 621–7

[317] [317] Joseph J, Singh S G and Vanjari S R K 2017 Ultra-smooth e-beam evaporated amorphous silicon thin films–a viable alternative for PECVD amorphous silicon thin films for MEMS applications Mater. Lett.197 52–55

[318] [318] Zhang X H, Wang D H, Qiu X Y, Ma Y J, Kong D B, Mllen K, Li X L and Zhi L J 2020 Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation Nat. Commun.11 3826

[319] [319] Lee J, Oh G, Jung H Y and Hwang J Y 2023 Silicon anode: a perspective on fast charging lithium-ion battery Inorganics11 182

[320] [320] Deng J W, Ji H X, Yan C L, Zhang J X, Si W P, Baunack S, Oswald S, Mei Y F and Schmidt O G 2013 Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance Angew. Chem.125 2382–6

[321] [321] van der Wilt P C, van Dijk B D, Bertens G J, Ishihara R and Beenakker C I M 2001 Formation of location-controlled crystalline islands using substrate-embedded seeds in excimer-laser crystallization of silicon films Appl. Phys. Lett.79 1819–21

[322] [322] Pereira L, guas H, Martins R M S, Vilarinho P, Fortunato E and Martins R 2004 Polycrystalline silicon obtained by metal induced crystallization using different metals Thin Solid Films451–2 334–9

[323] [323] Nguyen T N, Nguyen V D, Jung S and Yi J 2010 The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on a glass substrate Microelectron. Eng.87 2163–7

[324] [324] zmen T, Karaman M and Turan R 2014 Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique Thin Solid Films551 181–7

[325] [325] Bo X Z, Yao N, Shieh S R, Duffy T S and Sturm J C 2002 Large-grain polycrystalline silicon films with low intragranular defect density by low-temperature solid-phase crystallization without underlying oxide J. Appl. Phys.91 2910–5

[326] [326] Bidin N and Ab Razak S N 2012 ArF excimer laser annealing of polycrystalline silicon thin film Crystallization Science and Technology ed M Andreeta (IntechOpen) p 481

[327] [327] Pyo J, Lee B and Ryu H Y 2021 Evaluation of crystalline volume fraction of laser-annealed polysilicon thin films using Raman spectroscopy and spectroscopic ellipsometry Micromachines12 999

[328] [328] Chowdhury S, Park J, Kim J, Kim S, Kim Y, Cho E C, Cho Y and Yi J 2020 Crystallization of amorphous silicon via excimer laser annealing and evaluation of its passivation properties Energies13 3335

[329] [329] Fortunato G, Pecora A, Maiolo L, Cuscuna M, Simeone D, Minotti A and Mariucci L 2007 Excimer laser annealing for low-temperature polysilicon thin film transistor fabrication on plastic substrates 2007 15th Int. Conf. on Advanced Thermal Processing of Semiconductors (IEEE) pp 301–5

[330] [330] Kang M K, Kim S J and Kim H J 2014 Fabrication of high performance thin-film transistors via pressure-induced nucleation Sci. Rep.4 6858

[331] [331] Lee S, Cho Y J, Han B, Lee J, Choi S, Kang T, Chu H Y, Kwag J, Kim S C and Jang J 2022 Poly-Si thin-film transistors on polyimide substrate for 1 mm diameter rollable active-matrix organic light-emitting diode display Adv. Eng. Mater.24 2100910

[332] [332] Maita F, Maiolo L, Minotti A, Pecora A, Ricci D, Metta G, Scandurra G, Giusi G, Ciofi C and Fortunato G 2015 Ultraflexible tactile piezoelectric sensor based on low-temperature polycrystalline silicon thin-film transistor technology IEEE Sens. J.15 3819–26

[333] [333] Wang Z M, Wang J Y, Jeurgens L P H and Mittemeijer E J 2008 Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: experiments and calculations on Al/a-Ge and Al/a-Si bilayers Phys. Rev. B 77 045424

[334] [334] Karnaushenko D et al 2015 Light weight and flexible high-performance diagnostic platform Adv. Healthcare Mater.4 1517–25

[335] [335] Zhang S B, Zhang T, Liu Z G, Wang J Z, Yu L W, Xu J, Chen K J and Cabarrocas P R I 2021 Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio Nano Energy86 106121

[336] [336] Wacaser B A, Dick K A, Johansson J, Borgstrm M T, Deppert K and Samuelson L 2009 Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires Adv. Mater.21 153–65

[337] [337] Mohammad S N 2008 Analysis of the vapor–liquid–solid mechanism for nanowire growth and a model for this mechanism Nano Lett.8 1532–8

[338] [338] Noor M O and Krull U J 2014 Silicon nanowires as field-effect transducers for biosensor development: a review Anal. Chim. Acta825 1–25

[339] [339] Madkour L H 2019 Synthesis methods for 2D nanostructured materials, nanoparticles (NPs), nanotubes (NTs) and nanowires (NWs) Nanoelectronic Materials: Fundamentals and Applications ed L H Madkour (Springer) pp 393–456

[340] [340] Hannon J B, Kodambaka S, Ross F M and Tromp R M 2006 The influence of the surface migration of gold on the growth of silicon nanowires Nature440 69–71

[341] [341] Kurtuldu G and Krogh F 2021 Insight into crystallization paths in Au–Si eutectic alloy through the energy-temperature diagram Materialia16 101093

[342] [342] Przyborowski M, Hibiya T, Eguchi M and Egry I 1995 Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation J. Cryst. Growth151 60–65

[343] [343] Pinion C W, Nenon D P, Christesen J D and Cahoon J F 2014 Identifying crystallization- and incorporation-limited regimes during vapor–liquid–solid growth of Si nanowires ACS Nano8 6081–8

[344] [344] Westwater J, Gosain D P and Usui S 1997 Control of the size and position of silicon nanowires grown via the vapor-liquid-solid technique Jpn. J. Appl. Phys.36 6204–9

[345] [345] Wang Y W, Schmidt V, Senz S and Gsele U 2006 Epitaxial growth of silicon nanowires using an aluminium catalyst Nat. Nanotechnol.1 186–9

[346] [346] Chin C D, Chin S Y, Laksanasopin T and Sia S K 2013 Low-cost microdevices for point-of-care testing Point-of-Care Diagnostics on a Chip ed D Issadore and R M Westervelt (Springer) pp 3–21

[347] [347] Kaltenbrunner M et al 2013 An ultra-lightweight design for imperceptible plastic electronics Nature499 458–63

[348] [348] Kaltenbrunner M, White M S, Gowacki E D, Sekitani T, Someya T, Sariciftci N S and Bauer S 2012 Ultrathin and lightweight organic solar cells with high flexibility Nat. Commun.3 770

[349] [349] Chen K I, Li B R and Chen Y T 2011 Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation Nano Today6 131–54

[350] [350] Heinzig A, Slesazeck S, Kreupl F, Mikolajick T and Weber W M 2012 Reconfigurable silicon nanowire transistors Nano Lett.12 119–24

[351] [351] Weber W M et al 2006 Silicon-nanowire transistors with intruded nickel-silicide contacts Nano Lett.6 2660–6

[352] [352] Weber W M, Duesberg G S, Graham A P, Liebau M, Unger E, Cheze C, Geelhaar L, Lugli P, Riechert H and Kreupl F 2006 Silicon nanowires: catalytic growth and electrical characterization Phys. Status Solidi b 243 3340–5

[353] [353] Fahem Z, Csaba G, Erlen C M, Lugli P, Weber W M, Geelhaar L and Riechert H 2008 Analysis of the hysteretic behavior of silicon nanowire transistors Phys. Status Solidi c 5 27–30

[354] [354] Weber W M, Geelhaar L, Unger E, Chze C, Kreupl F, Riechert H and Lugli P 2007 Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics Phys. Status Solidi b 244 4170–5

[355] [355] Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y and Ko H 2019 Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance J. Mater. Chem. A 7 1107–14

[356] [356] Keppner H, Meier J, Torres P, Fischer D and Shah A 1999 Microcrystalline silicon and micromorph tandem solar cells Appl. Phys. A 69 169–77

[357] [357] Sderstrm T, Haug F J, Niquille X, Terrazzoni V and Ballif C 2009 Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells Appl. Phys. Lett.94 063501

[358] [358] Terakawa A 2013 Review of thin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo Sol. Energy Mater. Sol. Cells119 204–8

Tools

Get Citation

Copy Citation Text

Lee Ju Young, Ju Jeong Eun, Lee Chanwoo, Won Sang Min, Yu Ki Jun. Novel fabrication techniques for ultra-thin silicon based flexible electronics[J]. International Journal of Extreme Manufacturing, 2024, 6(4): 42005

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Dec. 12, 2023

Accepted: Dec. 25, 2024

Published Online: Dec. 25, 2024

The Author Email:

DOI:10.1088/2631-7990/ad492e

Topics