Journal of Synthetic Crystals, Volume. 53, Issue 12, 2043(2024)
Research Progress on Lu2O3 Based Laser Transparent Ceramics
[5] [5] PETERMANN K, HUBER G, FORNASIERO L, et al. Rare-earth-doped sesquioxides[J]. Journal of Luminescence, 2000, 87: 973-975.
[6] [6] LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics[J]. Journal of the European Ceramic Society, 2021, 41(7): 3895-3910.
[7] [7] PETERMANN K, FORNASIERO L, MIX E, et al. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments[J]. Optical Materials, 2002, 19(1): 67-71.
[10] [10] ZYCH E, TROJAN-PIEGZA J, DORENBOS P. Radioluminescence of Lu2O3∶Eu nanocrystalline powder and vacuum-sintered ceramic[J]. Radiation Measurements, 2004, 38(4/5/6): 471-474.
[11] [11] SHI Y, CHEN Q W, SHI J L. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics[J]. Optical Materials, 2009, 31(5): 729-733.
[12] [12] SEELEY Z M, KUNTZ J D, CHEREPY N J, et al. Transparent Lu2O3∶Eu ceramics by sinter and HIP optimization[J]. Optical Materials, 2011, 33(11): 1721-1726.
[13] [13] REN Y, LI X D, ZHANG Z, et al. Effects of Zr4+-doping on the properties of (Lu, Gd)2O3∶Eu transparent ceramics: insight from the photoluminescent spectra in as-sintered and annealed state[J]. Ceramics International, 2023, 49(11): 18541-18551.
[14] [14] ZHAO W H, XU T, WANG Y Z, et al. Sintering mechanism and optical properties of (Lu1-xScxEu0.05)2O3 scintillation ceramics[J]. Journal of the European Ceramic Society, 2024, 44(7): 4631-4638.
[15] [15] GRUBER J B, SARDAR D K, YOW R M, et al. Energy-level structure and spectral analysis of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12[J]. 2004, 96(6): 3050-3056.
[16] [16] LI J H, LIU X H, WU J B, et al. High-power diode-pumped Nd∶Lu2O3 crystal continuouswave thin-disk laser at 1359 nm[J]. Laser Physics Letters, 2012, 9(3): 195-198.
[17] [17] JU M, XIAO Y, ZHONG M M, et al. New theoretical insights into the crystal-field splitting and transition mechanism for Nd3+-doped Y3Al5O12[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10745-10750.
[18] [18] VON BRUNN P, HEUER A M, FORNASIERO L, et al. Efficient laser operation of Nd3+∶Lu2O3 at various wavelengths between 917 nm and 1 463 nm[J]. Laser Physics, 2016, 26(8): 084003.
[19] [19] HAO L Z, WU K, CONG H J, et al. Spectroscopy and laser performance of Nd∶Lu2O3 crystal[J]. Optics Express, 2011, 19(18): 17774-17779.
[21] [21] PAVEL N. Simultaneous dual-wavelength emission at 0.90 and 1.06 m in Nd-doped laser crystals[J]. Laser Physics, 2010, 20(1): 215-221.
[22] [22] HUANG B, YI Q, YANG L L, et al. Dual-wavelength nanosecond Nd∶YVO4 laser with switchable inhomogeneous polarization output[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1601305.
[23] [23] PANG S Y, QIAN X B, WU Q H, et al. Structure and spectral property of Sc doped Nd∶CaF2 laser crystals[J]. Journal of Inorganic Materials, 2018, 33(8): 873.
[24] [24] DANAILOV M B, MILEV I I. Simultaneous multiwavelength operation of Nd∶YAG laser[J]. Applied Physics Letters, 1992, 61(7): 746-748.
[25] [25] BOULESTEIX R, EPHERRE R, NOYAU S, et al. Highly transparent Nd∶Lu2O3 ceramics obtained by coupling slip-casting and spark plasma sintering[J]. Scripta Materialia, 2014, 75: 54-57.
[26] [26] DAI Z F, LIU Q, TOCI G, et al. Fabrication and laser oscillation of Yb∶Sc2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the European Ceramic Society, 2018, 38(4): 1632-1638.
[27] [27] BALLATO J, MCMILLEN C, KOKUOZ B, et al. The synthesis and properties of rare earth doped yttria and scandia for eye-safe single crystal and ceramic lasers[C]//Solid State Lasers XVII: Technology and Devices. San Jose, CA. SPIE, 2008, 6871: 68711G.
[28] [28] LU J, TAKAICHI K, UEMATSU T, et al. Promising ceramic laser material: highly transparent Nd3+∶Lu2O3 ceramic[J]. 2002, 81(23): 4324-4326.
[29] [29] AN L Q, ITO A, GOTO T. Fabrication of transparent lutetium oxide by spark plasma sintering[J]. Journal of the American Ceramic Society, 2011, 94(3): 695-698.
[32] [32] YAO W C, UEHARA H, TOKITA S, et al. LD-pumped 2.8 m Er∶Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14(1): 012001.
[33] [33] YOU L, LU D Z, PAN Z B, et al. High-efficiency 3 m Er∶YGG crystal lasers[J]. Optics Letters, 2018, 43(23): 5873-5876.
[34] [34] DINERMAN B J, MOULTON P F. 3-m cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145.
[35] [35] YAO W C, UEHARA H, KAWASE H, et al. Highly efficient Er∶YAP laser with 6.9 W of output power at 2920 nm[J]. Optics Express, 2020, 28(13): 19000-19007.
[36] [36] KRNKEL C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-m spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602013.
[37] [37] LI T, BEIL K, KRNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 m[J]. Optics Letters, 2012, 37(13): 2568-2570.
[38] [38] HEUER A M, VON BRUNN P, HUBER G, et al. Dy3+∶Lu2O3 as a novel crystalline oxide for mid-infrared laser applications[J]. Optical Materials Express, 2018, 8(11): 3447.
[39] [39] PETERS V, FORNASIERO L, MIX E, et al. Spectroscopic characterization and diode-pumped laser action at 2.7 m of Er∶Lu2O3[C]. Technical Digest of the Conference on Lasers and Electro-Optics Europe, 1998: 379.
[41] [41] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573.
[43] [43] SANAMYAN T, SIMMONS J, DUBINSKII M. Efficient cryo-cooled 2.7-m Er3+∶Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 2010, 7(8): 569-572.
[44] [44] DING M M, LI X X, WANG F, et al. Power scaling of diode-pumped Er∶Y2O3 ceramic laser at 2.7 m[J]. Applied Physics Express, 2022, 15(6): 062004.
[45] [45] WANG L, HUANG H T, SHEN D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 27 m[J]. Optics Express, 2014, 22(16): 19495.
[46] [46] UEHARA H, YASUHARA R, TOKITA S, et al. Efficient continuous wave and quasi-continuous wave operation of a 2.8 m Er∶Lu2O3 ceramic laser[J]. Optics Express, 2017, 25(16): 18677-18684.
[47] [47] UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 2.8 m by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497-3507.
[48] [48] UEHARA H, TOKITA S, KAWANAKA J, et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 m with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12(2): 022002.
[50] [50] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3.
[51] [51] TAKAYUKI Y, YRTAKA F, HIDEKI Y. et al. Optical and scintillation properties oftrans parent ceramic Yb∶Lu2O3 with different Yb concentrations[J]. Optical Materials, 2014, 36: 1044-1048.
[52] [52] SANGHERA J, KIM W, BAKER C, et al. Laser oscillation in hot pressed 10% Yb3+∶Lu2O3 ceramic[J]. Optical Materials, 2011, 33(5): 670-674.
[53] [53] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576-578.
[54] [54] LIU Q, LI J B, DAI J W, et al. Fabrication, microstructure and spectroscopic properties of Yb∶Lu2O3 transparent ceramics from co-precipitated nanopowders[J]. Ceramics International, 2018, 44(10): 11635-11643.
[55] [55] SU X, WANG Y, YIN Y, et al. Sub-100-fs Kerr-lens mode-locked Yb∶Lu2O3 laser with more than 60% optical efficiency[J]. Opt Lett, 2024, 49(1): 145-148.
[56] [56] DONG L L, MA M Z, JING W, et al. Synthesis of highly sinterable Yb∶Lu2O3 nanopowders via spray co-precipitation for transparent ceramics[J]. Ceramics International, 2019, 45(15): 19554-19561.
[57] [57] ESSER S, RHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063-6066.
[59] [59] CHEN Q W, SHI Y, AN L Q, et al. Fabrication and photoluminescence characteristics of Eu3+-doped Lu2O3 transparent ceramics[J]. Journal of the American Ceramic Society, 2006, 89(6): 2038-2042.
[60] [60] EICHHORN M. Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 2008, 93(2): 269-316.
[61] [61] SCHOLLE K, LAMRINI S, KOOPMANN P, et al. 2 m laser sources and their possible applications[M]//Frontiers in Guided Wave Optics and Optoelectronics. Croatia: InTech, 2010.
[62] [62] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. High power diode pumped 2 m laser operation of Tm∶Lu2O3[C]//Conference on Lasers and Electro-Optics. Optica Publishing Group, 2010: CMDD1.
[63] [63] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 m[J]. Applied Physics B, 2011, 102(1): 19-24.
[64] [64] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3.
[65] [65] UEDA K, BISSON J F, YAGI H, et al. Scalable ceramic lasers[J]. Laser Physics-Lawrence, 2005, 15(7): 927.
[66] [66] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Efficient diode-pumped laser operation of Tm∶Lu2O3 around 2 m[J]. Optics Letters, 2011, 36(6): 948-950.
[67] [67] ANTIPOV O L, GOLOVKIN S Y, GORSHKOV O N, et al. Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+∶Lu2O3 ceramics[J]. Quantum Electronics, 2011, 41(10): 863-868.
[68] [68] ANTIPOV O L, NOVIKOV A A, ZAKHAROV N G, et al. Optical properties and efficient laser oscillation at 2066 nm of novel Tm∶Lu2O3 ceramics[J]. Optical Materials Express, 2012, 2(2): 183-189.
[69] [69] LAGATSKY A A, HOPKINS J M. Diode-pumped femtosecond Tm-doped Lu2O3 ceramic laser[C]//Laser Applications Conference. Optica Publishing Group, 2016: JTu2A. 5.
[70] [70] MORRIS J, STEVENSON N K, BOOKEY H T, et al. 1.9 m waveguide laser fabricated by ultrafast laser inscription in Tm∶Lu2O3 ceramic[J]. Optics Express, 2017, 25(13): 14910-14917.
[71] [71] VETROVEC J, FILGAS D M, SMITH C A, et al. 2-micron lasing in Tm∶Lu2O3 ceramic: initial operation[C]//Solid State Lasers XXVII: Technology and Devices. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018: 6-15.
[72] [72] PAYNE S A, CHASE L L, SMITH L K, et al. Infrared cross-section measurements for crystals doped with Er3, Tm3, and Ho3[J]. IEEE Journal of Quantum Electronics, 1992, 28(11): 2619-2630.
[73] [73] WANG Y C, LAN R J, MATEOS X, et al. Broadly tunable mode-locked Ho∶YAG ceramic laser around 21 m[J]. Optics Express, 2016, 24(16): 18003-18012.
[74] [74] CHEN H, SHEN D Y, ZHANG J, et al. In-band pumped highly efficient Ho∶YAG ceramic laser with 21 W output power at 2097 nm[J]. Optics Letters, 2011, 36(9): 1575-1577.
[75] [75] CHENG X J, XU J Q, WANG M J, et al. Ho∶YAG ceramic laser pumped by Tm∶YLF lasers at room temperature[J]. Laser Physics Letters, 2010, 7(5): 351-354.
[76] [76] IKESUE A, AUNG Y L, LUPEI V. Preface[M]//Ceramic Lasers. Cambridge: Cambridge University Press, 2013.
[77] [77] LAMRINI S, KOOPMANN P, SCHFER M, et al. Efficient laser operation of Ho∶Lu2O3 at room temperature[C]//2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC). May 22-26, 2011, Munich, Germany. IEEE, 2011: CA1_6.
[78] [78] DONG J, WANG W, XUE Y, et al. Crystal growth and spectroscopic analysis of Ho∶Lu2O3 crystal for mid-infrared emission[J]. Journal of Luminescence, 2022, 251: 119192.
[79] [79] KIM W, BAKER C, FLOREA C, et al. Doped sesquioxide ceramic for eye-safe solid state laser materials[C]//Solid State Lasers XXII: Technology and Devices. San Francisco, California, USA. SPIE, 2013: 104-109.
[80] [80] VIERS L, DELAUNAY F, BOULESTEIX R, et al. Study of densification mechanisms during spark plasma sintering of co-precipitated Ho∶Lu2O3 nanopowders: application to transparent ceramics for lasers[J]. Journal of the European Ceramic Society, 2021, 41(14): 7199-7207.
[81] [81] VIERS L, GUEN-GIRARD S, DALLA-BARBA G, et al. Optical and spectroscopic properties of Ho∶Lu2O3 transparent ceramics elaborated by spark plasma sintering[J]. Ceramics, 2024, 7(1): 208-221.
[82] [82] YIN D L, MA J, LIU P, et al. Submicron-grained Yb∶Lu2O3 transparent ceramics with lasing quality[J]. Journal of the American Ceramic Society, 2019, 102(5): 2587-2592.
[83] [83] KIM W, BAKER C, BOWMAN S, et al. Laser oscillation from Ho3+ doped Lu2O3 ceramics[J]. Optical Materials Express, 2013, 3(7): 913.
[84] [84] NEWBURGH G A, WORD-DANIELS A, MICHAEL A, et al. Resonantly diode-pumped Ho3+∶Y2O3 ceramic 2.1 m laser[J]. Optics Express, 2011, 19(4): 3604-3611.
[85] [85] JING W, LOIKO P, SERRES J M, et al. Synthesis, spectroscopic characterization and laser operation of Ho3+ in “mixed” (Lu, Sc)2O3 ceramics[J]. Journal of Luminescence, 2018, 203: 145-151.
[86] [86] XU X D, HU Z W, LI D Z, et al. First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic[J]. Optics Express, 2017, 25(13): 15322.
[87] [87] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Laser operation and spectroscopic investigations of Tm∶LuScO3[C]. CLEO/Europe, 2011: CA1-4.
[88] [88] BASYROVA L, LOIKO P, JING W, et al. Spectroscopy and efficient laser operation around 2.8 m of Er∶(Lu, Sc)2O3 sesquioxide ceramics[J]. Journal of Luminescence, 2021, 240: 118373.
[89] [89] LI D Z, KONG L C, XU X D, et al. Spectroscopy and mode-locking laser operation of Tm∶LuYO3 mixed sesquioxide ceramic[J]. Optics Express, 2019, 27(17): 24416-24425.
[90] [90] CHEN G Z, LI S M, FANG Q N, et al. Growth and spectroscopy of Er∶LuYO3 single crystal[J]. Journal of Luminescence, 2021, 239: 118347.
[91] [91] ZHAO Y G, WANG L, WANG Y C, et al. SWCNT-SA mode-locked Tm∶LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 m[J]. Optics Letters, 2020, 45(2): 459-462.
[92] [92] MONCORG R, GUYOT Y, KRNKEL C, et al. Mid-infrared emission properties of the Tm3+-doped sesquioxide crystals Y2O3, Lu2O3, Sc2O3 and mixed compounds (Y, Lu, Sc)2O3 around 1.5-, 2- and 2.3-m[J]. Journal of Luminescence, 2022, 241: 118537.
[93] [93] YANG C L, HUANG J Q, HUANG Q F, et al. Optical, thermal, and mechanical properties of (Y1-xScx)2O3 transparent ceramics[J]. Journal of Advanced Ceramics, 2022, 11(6): 901-911.
Get Citation
Copy Citation Text
ZHAO Wenhai, TAO Shixu, TONG Siyi, TANG Jian, ZUO Chuandong, CAO Yongge, MA Chaoyang. Research Progress on Lu2O3 Based Laser Transparent Ceramics[J]. Journal of Synthetic Crystals, 2024, 53(12): 2043
Category:
Received: Sep. 13, 2024
Accepted: Jan. 10, 2025
Published Online: Jan. 10, 2025
The Author Email: Chaoyang MA (machaoyang@sslab.org.cn)
CSTR:32186.14.