Journal of Synthetic Crystals, Volume. 53, Issue 12, 2043(2024)

Research Progress on Lu2O3 Based Laser Transparent Ceramics

ZHAO Wenhai1... TAO Shixu1, TONG Siyi1, TANG Jian1, ZUO Chuandong1,2, CAO Yongge1,3 and MA Chaoyang1,* |Show fewer author(s)
Author Affiliations
  • 1Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 2Zhongke Haoye Dongguan Material Technology Co., Ltd., Dongguan 523808, China
  • 3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    References(80)

    [5] [5] PETERMANN K, HUBER G, FORNASIERO L, et al. Rare-earth-doped sesquioxides[J]. Journal of Luminescence, 2000, 87: 973-975.

    [6] [6] LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics[J]. Journal of the European Ceramic Society, 2021, 41(7): 3895-3910.

    [7] [7] PETERMANN K, FORNASIERO L, MIX E, et al. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments[J]. Optical Materials, 2002, 19(1): 67-71.

    [10] [10] ZYCH E, TROJAN-PIEGZA J, DORENBOS P. Radioluminescence of Lu2O3∶Eu nanocrystalline powder and vacuum-sintered ceramic[J]. Radiation Measurements, 2004, 38(4/5/6): 471-474.

    [11] [11] SHI Y, CHEN Q W, SHI J L. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics[J]. Optical Materials, 2009, 31(5): 729-733.

    [12] [12] SEELEY Z M, KUNTZ J D, CHEREPY N J, et al. Transparent Lu2O3∶Eu ceramics by sinter and HIP optimization[J]. Optical Materials, 2011, 33(11): 1721-1726.

    [13] [13] REN Y, LI X D, ZHANG Z, et al. Effects of Zr4+-doping on the properties of (Lu, Gd)2O3∶Eu transparent ceramics: insight from the photoluminescent spectra in as-sintered and annealed state[J]. Ceramics International, 2023, 49(11): 18541-18551.

    [14] [14] ZHAO W H, XU T, WANG Y Z, et al. Sintering mechanism and optical properties of (Lu1-xScxEu0.05)2O3 scintillation ceramics[J]. Journal of the European Ceramic Society, 2024, 44(7): 4631-4638.

    [15] [15] GRUBER J B, SARDAR D K, YOW R M, et al. Energy-level structure and spectral analysis of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12[J]. 2004, 96(6): 3050-3056.

    [16] [16] LI J H, LIU X H, WU J B, et al. High-power diode-pumped Nd∶Lu2O3 crystal continuouswave thin-disk laser at 1359 nm[J]. Laser Physics Letters, 2012, 9(3): 195-198.

    [17] [17] JU M, XIAO Y, ZHONG M M, et al. New theoretical insights into the crystal-field splitting and transition mechanism for Nd3+-doped Y3Al5O12[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10745-10750.

    [18] [18] VON BRUNN P, HEUER A M, FORNASIERO L, et al. Efficient laser operation of Nd3+∶Lu2O3 at various wavelengths between 917 nm and 1 463 nm[J]. Laser Physics, 2016, 26(8): 084003.

    [19] [19] HAO L Z, WU K, CONG H J, et al. Spectroscopy and laser performance of Nd∶Lu2O3 crystal[J]. Optics Express, 2011, 19(18): 17774-17779.

    [21] [21] PAVEL N. Simultaneous dual-wavelength emission at 0.90 and 1.06 m in Nd-doped laser crystals[J]. Laser Physics, 2010, 20(1): 215-221.

    [22] [22] HUANG B, YI Q, YANG L L, et al. Dual-wavelength nanosecond Nd∶YVO4 laser with switchable inhomogeneous polarization output[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1601305.

    [23] [23] PANG S Y, QIAN X B, WU Q H, et al. Structure and spectral property of Sc doped Nd∶CaF2 laser crystals[J]. Journal of Inorganic Materials, 2018, 33(8): 873.

    [24] [24] DANAILOV M B, MILEV I I. Simultaneous multiwavelength operation of Nd∶YAG laser[J]. Applied Physics Letters, 1992, 61(7): 746-748.

    [25] [25] BOULESTEIX R, EPHERRE R, NOYAU S, et al. Highly transparent Nd∶Lu2O3 ceramics obtained by coupling slip-casting and spark plasma sintering[J]. Scripta Materialia, 2014, 75: 54-57.

    [26] [26] DAI Z F, LIU Q, TOCI G, et al. Fabrication and laser oscillation of Yb∶Sc2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the European Ceramic Society, 2018, 38(4): 1632-1638.

    [27] [27] BALLATO J, MCMILLEN C, KOKUOZ B, et al. The synthesis and properties of rare earth doped yttria and scandia for eye-safe single crystal and ceramic lasers[C]//Solid State Lasers XVII: Technology and Devices. San Jose, CA. SPIE, 2008, 6871: 68711G.

    [28] [28] LU J, TAKAICHI K, UEMATSU T, et al. Promising ceramic laser material: highly transparent Nd3+∶Lu2O3 ceramic[J]. 2002, 81(23): 4324-4326.

    [29] [29] AN L Q, ITO A, GOTO T. Fabrication of transparent lutetium oxide by spark plasma sintering[J]. Journal of the American Ceramic Society, 2011, 94(3): 695-698.

    [32] [32] YAO W C, UEHARA H, TOKITA S, et al. LD-pumped 2.8 m Er∶Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14(1): 012001.

    [33] [33] YOU L, LU D Z, PAN Z B, et al. High-efficiency 3 m Er∶YGG crystal lasers[J]. Optics Letters, 2018, 43(23): 5873-5876.

    [34] [34] DINERMAN B J, MOULTON P F. 3-m cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145.

    [35] [35] YAO W C, UEHARA H, KAWASE H, et al. Highly efficient Er∶YAP laser with 6.9 W of output power at 2920 nm[J]. Optics Express, 2020, 28(13): 19000-19007.

    [36] [36] KRNKEL C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-m spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602013.

    [37] [37] LI T, BEIL K, KRNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 m[J]. Optics Letters, 2012, 37(13): 2568-2570.

    [38] [38] HEUER A M, VON BRUNN P, HUBER G, et al. Dy3+∶Lu2O3 as a novel crystalline oxide for mid-infrared laser applications[J]. Optical Materials Express, 2018, 8(11): 3447.

    [39] [39] PETERS V, FORNASIERO L, MIX E, et al. Spectroscopic characterization and diode-pumped laser action at 2.7 m of Er∶Lu2O3[C]. Technical Digest of the Conference on Lasers and Electro-Optics Europe, 1998: 379.

    [41] [41] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573.

    [43] [43] SANAMYAN T, SIMMONS J, DUBINSKII M. Efficient cryo-cooled 2.7-m Er3+∶Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 2010, 7(8): 569-572.

    [44] [44] DING M M, LI X X, WANG F, et al. Power scaling of diode-pumped Er∶Y2O3 ceramic laser at 2.7 m[J]. Applied Physics Express, 2022, 15(6): 062004.

    [45] [45] WANG L, HUANG H T, SHEN D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 27 m[J]. Optics Express, 2014, 22(16): 19495.

    [46] [46] UEHARA H, YASUHARA R, TOKITA S, et al. Efficient continuous wave and quasi-continuous wave operation of a 2.8 m Er∶Lu2O3 ceramic laser[J]. Optics Express, 2017, 25(16): 18677-18684.

    [47] [47] UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 2.8 m by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497-3507.

    [48] [48] UEHARA H, TOKITA S, KAWANAKA J, et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 m with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12(2): 022002.

    [50] [50] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3.

    [51] [51] TAKAYUKI Y, YRTAKA F, HIDEKI Y. et al. Optical and scintillation properties oftrans parent ceramic Yb∶Lu2O3 with different Yb concentrations[J]. Optical Materials, 2014, 36: 1044-1048.

    [52] [52] SANGHERA J, KIM W, BAKER C, et al. Laser oscillation in hot pressed 10% Yb3+∶Lu2O3 ceramic[J]. Optical Materials, 2011, 33(5): 670-674.

    [53] [53] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576-578.

    [54] [54] LIU Q, LI J B, DAI J W, et al. Fabrication, microstructure and spectroscopic properties of Yb∶Lu2O3 transparent ceramics from co-precipitated nanopowders[J]. Ceramics International, 2018, 44(10): 11635-11643.

    [55] [55] SU X, WANG Y, YIN Y, et al. Sub-100-fs Kerr-lens mode-locked Yb∶Lu2O3 laser with more than 60% optical efficiency[J]. Opt Lett, 2024, 49(1): 145-148.

    [56] [56] DONG L L, MA M Z, JING W, et al. Synthesis of highly sinterable Yb∶Lu2O3 nanopowders via spray co-precipitation for transparent ceramics[J]. Ceramics International, 2019, 45(15): 19554-19561.

    [57] [57] ESSER S, RHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063-6066.

    [59] [59] CHEN Q W, SHI Y, AN L Q, et al. Fabrication and photoluminescence characteristics of Eu3+-doped Lu2O3 transparent ceramics[J]. Journal of the American Ceramic Society, 2006, 89(6): 2038-2042.

    [60] [60] EICHHORN M. Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 2008, 93(2): 269-316.

    [61] [61] SCHOLLE K, LAMRINI S, KOOPMANN P, et al. 2 m laser sources and their possible applications[M]//Frontiers in Guided Wave Optics and Optoelectronics. Croatia: InTech, 2010.

    [62] [62] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. High power diode pumped 2 m laser operation of Tm∶Lu2O3[C]//Conference on Lasers and Electro-Optics. Optica Publishing Group, 2010: CMDD1.

    [63] [63] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 m[J]. Applied Physics B, 2011, 102(1): 19-24.

    [64] [64] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3.

    [65] [65] UEDA K, BISSON J F, YAGI H, et al. Scalable ceramic lasers[J]. Laser Physics-Lawrence, 2005, 15(7): 927.

    [66] [66] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Efficient diode-pumped laser operation of Tm∶Lu2O3 around 2 m[J]. Optics Letters, 2011, 36(6): 948-950.

    [67] [67] ANTIPOV O L, GOLOVKIN S Y, GORSHKOV O N, et al. Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+∶Lu2O3 ceramics[J]. Quantum Electronics, 2011, 41(10): 863-868.

    [68] [68] ANTIPOV O L, NOVIKOV A A, ZAKHAROV N G, et al. Optical properties and efficient laser oscillation at 2066 nm of novel Tm∶Lu2O3 ceramics[J]. Optical Materials Express, 2012, 2(2): 183-189.

    [69] [69] LAGATSKY A A, HOPKINS J M. Diode-pumped femtosecond Tm-doped Lu2O3 ceramic laser[C]//Laser Applications Conference. Optica Publishing Group, 2016: JTu2A. 5.

    [70] [70] MORRIS J, STEVENSON N K, BOOKEY H T, et al. 1.9 m waveguide laser fabricated by ultrafast laser inscription in Tm∶Lu2O3 ceramic[J]. Optics Express, 2017, 25(13): 14910-14917.

    [71] [71] VETROVEC J, FILGAS D M, SMITH C A, et al. 2-micron lasing in Tm∶Lu2O3 ceramic: initial operation[C]//Solid State Lasers XXVII: Technology and Devices. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018: 6-15.

    [72] [72] PAYNE S A, CHASE L L, SMITH L K, et al. Infrared cross-section measurements for crystals doped with Er3, Tm3, and Ho3[J]. IEEE Journal of Quantum Electronics, 1992, 28(11): 2619-2630.

    [73] [73] WANG Y C, LAN R J, MATEOS X, et al. Broadly tunable mode-locked Ho∶YAG ceramic laser around 21 m[J]. Optics Express, 2016, 24(16): 18003-18012.

    [74] [74] CHEN H, SHEN D Y, ZHANG J, et al. In-band pumped highly efficient Ho∶YAG ceramic laser with 21 W output power at 2097 nm[J]. Optics Letters, 2011, 36(9): 1575-1577.

    [75] [75] CHENG X J, XU J Q, WANG M J, et al. Ho∶YAG ceramic laser pumped by Tm∶YLF lasers at room temperature[J]. Laser Physics Letters, 2010, 7(5): 351-354.

    [76] [76] IKESUE A, AUNG Y L, LUPEI V. Preface[M]//Ceramic Lasers. Cambridge: Cambridge University Press, 2013.

    [77] [77] LAMRINI S, KOOPMANN P, SCHFER M, et al. Efficient laser operation of Ho∶Lu2O3 at room temperature[C]//2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC). May 22-26, 2011, Munich, Germany. IEEE, 2011: CA1_6.

    [78] [78] DONG J, WANG W, XUE Y, et al. Crystal growth and spectroscopic analysis of Ho∶Lu2O3 crystal for mid-infrared emission[J]. Journal of Luminescence, 2022, 251: 119192.

    [79] [79] KIM W, BAKER C, FLOREA C, et al. Doped sesquioxide ceramic for eye-safe solid state laser materials[C]//Solid State Lasers XXII: Technology and Devices. San Francisco, California, USA. SPIE, 2013: 104-109.

    [80] [80] VIERS L, DELAUNAY F, BOULESTEIX R, et al. Study of densification mechanisms during spark plasma sintering of co-precipitated Ho∶Lu2O3 nanopowders: application to transparent ceramics for lasers[J]. Journal of the European Ceramic Society, 2021, 41(14): 7199-7207.

    [81] [81] VIERS L, GUEN-GIRARD S, DALLA-BARBA G, et al. Optical and spectroscopic properties of Ho∶Lu2O3 transparent ceramics elaborated by spark plasma sintering[J]. Ceramics, 2024, 7(1): 208-221.

    [82] [82] YIN D L, MA J, LIU P, et al. Submicron-grained Yb∶Lu2O3 transparent ceramics with lasing quality[J]. Journal of the American Ceramic Society, 2019, 102(5): 2587-2592.

    [83] [83] KIM W, BAKER C, BOWMAN S, et al. Laser oscillation from Ho3+ doped Lu2O3 ceramics[J]. Optical Materials Express, 2013, 3(7): 913.

    [84] [84] NEWBURGH G A, WORD-DANIELS A, MICHAEL A, et al. Resonantly diode-pumped Ho3+∶Y2O3 ceramic 2.1 m laser[J]. Optics Express, 2011, 19(4): 3604-3611.

    [85] [85] JING W, LOIKO P, SERRES J M, et al. Synthesis, spectroscopic characterization and laser operation of Ho3+ in “mixed” (Lu, Sc)2O3 ceramics[J]. Journal of Luminescence, 2018, 203: 145-151.

    [86] [86] XU X D, HU Z W, LI D Z, et al. First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic[J]. Optics Express, 2017, 25(13): 15322.

    [87] [87] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Laser operation and spectroscopic investigations of Tm∶LuScO3[C]. CLEO/Europe, 2011: CA1-4.

    [88] [88] BASYROVA L, LOIKO P, JING W, et al. Spectroscopy and efficient laser operation around 2.8 m of Er∶(Lu, Sc)2O3 sesquioxide ceramics[J]. Journal of Luminescence, 2021, 240: 118373.

    [89] [89] LI D Z, KONG L C, XU X D, et al. Spectroscopy and mode-locking laser operation of Tm∶LuYO3 mixed sesquioxide ceramic[J]. Optics Express, 2019, 27(17): 24416-24425.

    [90] [90] CHEN G Z, LI S M, FANG Q N, et al. Growth and spectroscopy of Er∶LuYO3 single crystal[J]. Journal of Luminescence, 2021, 239: 118347.

    [91] [91] ZHAO Y G, WANG L, WANG Y C, et al. SWCNT-SA mode-locked Tm∶LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 m[J]. Optics Letters, 2020, 45(2): 459-462.

    [92] [92] MONCORG R, GUYOT Y, KRNKEL C, et al. Mid-infrared emission properties of the Tm3+-doped sesquioxide crystals Y2O3, Lu2O3, Sc2O3 and mixed compounds (Y, Lu, Sc)2O3 around 1.5-, 2- and 2.3-m[J]. Journal of Luminescence, 2022, 241: 118537.

    [93] [93] YANG C L, HUANG J Q, HUANG Q F, et al. Optical, thermal, and mechanical properties of (Y1-xScx)2O3 transparent ceramics[J]. Journal of Advanced Ceramics, 2022, 11(6): 901-911.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Wenhai, TAO Shixu, TONG Siyi, TANG Jian, ZUO Chuandong, CAO Yongge, MA Chaoyang. Research Progress on Lu2O3 Based Laser Transparent Ceramics[J]. Journal of Synthetic Crystals, 2024, 53(12): 2043

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 13, 2024

    Accepted: Jan. 10, 2025

    Published Online: Jan. 10, 2025

    The Author Email: Chaoyang MA (machaoyang@sslab.org.cn)

    DOI:

    CSTR:32186.14.

    Topics