Infrared Technology, Volume. 45, Issue 10, 1066(2023)
Advances in Underwater Photoelectric Imaging Technology
[12] [12] Duntley S Q. Light in the sea[J]. J. Opt. Soc. Am., 1963, 53(2): 214-233.
[22] [22] Caimi F M, Dalgleish F R, Giddings T E, et al. Pulse versus CW laser line scan imaging detection methods: simulation results[C]//Proc. MTS/IEEE Oceans Europe, 2007: 1-4.
[27] [27] Prats M, Fernandez J J, Sanz P J. An approach for semi-autonomous recovery of unknown objects in underwater environments[C] //13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) of IEEE, 2012: 1452-1457.
[34] [34] Narasimhan S G, Nayar K, Sun B, et al. Structured light in scattering media[C]//Proc. of IEEE, 2005, 1: 420-427.
[35] [35] Levoy M, CHEN B, Vaish V, et al. Synthetic aperture confocal imaging[J]. ACM Trans Graphics, 2004, 23: 825-834.
[38] [38] VELLEKOOP I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9): 12189-12206.
[39] [39] VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5): 320-322.
[40] [40] KATZ O, SMALL E, SILLBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6(8): 549-553.
[41] [41] POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.
[42] [42] LIUTKUS A, MARTINA D, POPOFF S, et al. Imaging with nature: compressive imaging using a multiply scattering medium[J]. Scientific Reports, 2015(4): 5552.
[43] [43] ANDREOLI D, VOLPE U, POPOFF S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 2015(5): 10347.
[44] [44] DONG J, KRZAKALA F, GIGAN S. Spectral method for multiplexed phase retrieval and application in optical imaging in complex media[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2019: 4936-4967.
[45] [45] YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity supression in biological samples[J]. Nature Photonics, 2008(2): 110-115.
[50] [50] ROWE M P, PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J]. Optics Letters, 1995, 20(6): 608-610.
[51] [51] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587.
[52] [52] HUANG B, LIU T, HU H, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838.
[53] [53] HU H,ZHAO L,HUANG B,et al. Enhancing visibility of polarimetric underwater image by transmittance correction[J]. IEEE Photonics Journal, 2017, 9(3): 1-10.
[54] [54] LIU F,WEI Y,HAN P,et al. Polarization-based exploration for clear underwater vision in natural illumination[J]. Optics Express, 2019, 27(3): 3629-3641.
[57] [57] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.
[58] [58] Klyshko D N. Two-photon light: influence of filtration and a new possible EPR experiment[J]. Physics Letters A, 1988, 128(3-4): 133-137.
[59] [59] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429.
[60] [60] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.
[61] [61] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.
[62] [62] LE M, WANG G, ZHENG H, et al. Underwater computational ghost imaging[J]. Optics Express, 2017, 25(19): 22859-22868.
[63] [63] LUO C L, LI Z L, XU J H, et al. Computational ghost imaging and ghost diffraction in turbulent ocean[J]. Laser Physics Letters, 2018, 15(12): 125205.
[64] [64] ZHANG Y, LI W, WU H, et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 2019, 441: 45-48.
[67] [67] ANDO T, HORISAKI R, TANIDA J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.
[68] [68] LI Y, XUE Y, TIAN L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.
[69] [69] LYU M, WANG H, LI G, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.
[70] [70] LAI X,LI Q,WU X,et al. Mutual transfer learning of reconstructing images through a multimode fiber or a scattering medium[J]. IEEE Access, 2021(9): 68387-68395.
[72] [72] Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors[J]. Microelectronics Journal, 2006, 37(5): 433-451.
Get Citation
Copy Citation Text
SHI Feng, CHENG Hongchang, YAN Lei, GUO Xin, LI Shilong, QIU Hongjin, DING Xiwen. Advances in Underwater Photoelectric Imaging Technology[J]. Infrared Technology, 2023, 45(10): 1066
Category:
Received: Jul. 20, 2022
Accepted: --
Published Online: Nov. 20, 2023
The Author Email: Feng SHI (shfyf@126.com)
CSTR:32186.14.