Laser Journal, Volume. 45, Issue 10, 67(2024)
Lightweight remote sensing image change detection based on LS-CDNet
[2] [2] Shi Q, Liu M, Li S, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60(5): 1-16.
[3] [3] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662.
[4] [4] Chen J, Yuan Z, Peng J, et al. DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14(2): 1194-1206.
[5] [5] Zhang C, Yue P, Tapete D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166(8): 183-200.
[6] [6] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
[7] [7] Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 116-131.
[9] [9] Lei T, Geng X, Ning H, et al. Ultralightweight Spatial-Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61(6): 1-14.
[10] [10] Daudt R C, Le Saux B, Boulch A. Fully convolutional siamese networks for change detection[C]//2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018: 4063-4067.
[11] [11] Chang Z, Li H, Chen D, et al. Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3 + Network[J]. Remote Sensing, 2023, 15(21): 5088.
[12] [12] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
[13] [13] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11534-11542.
[14] [14] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13713-13722.
[15] [15] Han M, Li R, Zhang C. LWCDNet: A lightweight fully convolution network for change detection in optical remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19(8): 1-5.
[16] [16] Lebedev M A, Vizilter Y V, Vygolov O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42(2): 565-571.
[17] [17] Lin X, Li X, Wang Z, et al. Detecting sparse building change with ambiguous label using Siamese full-scale connected network and instance augmentation[J]. Applied Intelligence, 2023, 53(19): 22969-22990.
[18] [18] Bai T, Wang L, Yin D, et al. Deep learning for change detection in remote sensing: a review[J]. Geo-spatial Information Science, 2023, 26(3): 262-288.
Get Citation
Copy Citation Text
HUANG Zian, ZHAO Genping, WANG Zhuowei. Lightweight remote sensing image change detection based on LS-CDNet[J]. Laser Journal, 2024, 45(10): 67
Category:
Received: Feb. 13, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: Genping ZHAO (zhaoyinpin888@163.com)