Ultrafast Science, Volume. 3, Issue 1, 0013(2023)

Breakdown Spectroscopy Induced by Nonlinear Interactions of Femtosecond Laser Filaments and Multidimensional Plasma Gratings

Mengyun Hu1,2,3, Shupeng Xu1,2、*, Shuai Yuan2,3, and Heping Zeng1,2,4、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
  • 2Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
  • 3Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
  • 4Jinan Institute of Quantum Technology, Jinan, China.
  • show less
    References(86)

    [1] [1] Arca G, Ciucci A, Palleschi V, Rastelli S, Tognoni E. Trace element analysis in water by the laser-induced breakdown spectroscopy technique. Appl Spectrosc. 1997;51(8):1102–1105.

    [2] [2] Senesi GS, Harmon RS, Hark RR. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochim Acta B At Spectrosc. 2021;175:Article 106013.

    [3] [3] Harmon RS, Senesi GS. Laser-induced breakdown spectroscopy—A geochemical tool for the 21st century. Appl Geochem. 2021;128:Article 104929.

    [4] [4] Legnaioli S, Campanella B, Poggialini F, Pagnotta S, Harith MA, Abdel-Salam ZA, Palleschi V. Industrial applications of laser-induced breakdown spectroscopy: A review. Anal Methods. 2020;12(8):1014–1029.

    [5] [5] Wang M, Jiang L, Wang S, Guo Q, Tian F, Chu Z, Zhang J, Li X, Lu Y. Multiscale visualization of colloidal particle lens array mediated plasma dynamics for dielectric nanoparticle enhanced femtosecond laser-induced breakdown spectroscopy. Anal Chem. 2019;91(15):9952–9961.

    [6] [6] Aguirre MA, Legnaioli S, Almodóvar F, Hidalgo M, Palleschi V, Canals A. Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid–liquid microextraction. Spectrochim Acta B At Spectrosc. 2013;79–80:88–93.

    [7] [7] Dikshit V, Yueh FY, Singh JP, McIntyre DL, Jain JC, Melikechi N. Laser induced breakdown spectroscopy: A potential tool for atmospheric carbon dioxide measurement. Spectrochim Acta B At Spectrosc. 2012;68:65–70.

    [8] [8] Hussain A, Iqbal ST, Shahbaz RM, Zafar M, Arshad AA, Aslam K, Mukhtar M. Varying magnetic field strength as an effective approach to boost up the plasma signal in laser-induced breakdown spectroscopy. Heliyon. 2022;8(9):Article e10563.

    [9] [9] Yueh FY, Kumar A, Singh JP. Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses. Appl Opt. 2003;42(30):6047–6051.

    [10] [10] Carter JC, Pender J, Colston BW, Chance Carter J, Michael Angel S. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl Opt. 2003;42(30):6099–6106.

    [11] [11] de Giacomo A, Dell’aglio M, Colao F, Fantoni R, Lazic V. Double-pulse LIBS in bulk water and on submerged bronze samples. Appl Surf Sci. 2005;247(1–4):157–162.

    [12] [12] Bertolini A, Carelli G, Francesconi F, Marchesini L, Marsili P, Sorrentino F, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, et al. Modì: A new mobile instrument for in situ double-pulse LIBS analysis. Anal Bioanal Chem. 2006;385(2):240–247.

    [13] [13] Elnasharty IY, Doucet FR, Gravel JFY, Bouchard P, Sabsabi M. Double-pulse LIBS combining short and long nanosecond pulses in the microjoule range. J Anal At Spectrom. 2014;29(9):1660–1666.

    [14] [14] Pardede M, Lie TJ, Iqbal J, Bilal M, Hedwig R, Ramli M, Khumaeni A, Budi WS, Idris N, Abdulmadjid SN, et al. H-D analysis employing energy transfer from metastable excited-state He in double-pulse LIBS with low-pressure He gas. Anal Chem. 2019;91(2):1571–1577.

    [15] [15] Giannakaris N, Haider A, Ahamer CM, Grünberger S, Trautner S, Pedarnig JD. Femtosecond single-pulse and orthogonal double-pulse laser-induced breakdown spectroscopy (LIBS): Femtogram mass detection and chemical imaging with micrometer spatial resolution. Appl Spectrosc. 2022;76(8):926–936.

    [16] [16] Yeak J, Phillips MC, Harilal SS. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy. Opt Express. 2015;23(21):27113–27122.

    [17] [17] Hu M, Peng J, Niu S, Zeng H. Plasma-grating-induced breakdown spectroscopy. Adv Photon. 2020;2(6):Article 065001.

    [18] [18] Hu M, Shi S, Yan M, Wu E, Zeng H. Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating. J Anal At Spectrom. 2022;37(4):841–848.

    [19] [19] Liu J, Li W, Pan H, Zeng H. Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air. Appl Phys Lett. 2011;99(15):Article 151105.

    [20] [20] Zhang DC, Hu ZQ, Su YB, Hai B, Zhu XL, Zhu JF, Ma X. Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS). Opt Express. 2018;26(14):Article 18794.

    [21] [21] Baudelet M, Smith BW. The first years of laser-induced breakdown spectroscopy. J Anal At Spectrom. 2013;28(5):624–629.

    [22] [22] Xu X, Du C, Ma F, Shen Y, Zhou J. Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): Principles and case studies. Forensic Sci Int. 2020;310:Article 110222.

    [23] [23] Villas-Boas PR, Franco MA, Martin-Neto L, Gollany HT, Milori DMBP. Applications of laser-induced breakdown spectroscopy for soil analysis, part I: Review of fundamentals and chemical and physical properties. Eur J Soil Sci. 2020;71(5):789–804.

    [25] [25] Contreras V, Valencia R, Peralta J, Sobral H, Meneses-Nava MA, Martinez H. Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy. Opt Lett. 2018;43(10):2260–2263.

    [26] [26] Tang Z, Hao Z, Zhou R, Li Q, Liu K, Zhang W, Yan J, Wei K, Li X. Sensitive analysis of fluorine and chlorine elements in water solution using laser-induced breakdown spectroscopy assisted with molecular synthesis. Talanta. 2020;224:Article 121784.

    [27] [27] Rehan I, Gondal MA, Aldakheel RK, Rehan K, Sultana S, Almessiere MA, Ali Z. Development of laser induced breakdown spectroscopy technique to study irrigation water quality impact on nutrients and toxic elements distribution in cultivated soil. Saudi J Biol Sci. 2021;28(12):6876–6883.

    [28] [28] Wang P, Li N, Yan C, Feng Y, Ding Y, Zhang T, Li H. Rapid quantitative analysis of the acidity of iron ore by the laser-induced breakdown spectroscopy (LIBS) technique coupled with variable importance measures-random forests (VIM-RF). Anal Methods. 2019;11(27):3419–3428.

    [29] [29] Álvarez J, Velásquez M, Sandoval-Muñoz C, Castillo RP, Bastidas CY, Luarte D, Sbárbaro D, Rammlmair D, Yáñez J. Improved mineralogical analysis in copper ores by laser-induced breakdown spectroscopy. J Anal At Spectrom. 2022;37(10):1994–2004.

    [30] [30] Baudelet M, Guyon L, Yu J, Wolf J-P, Amodeo T, Fréjafon E, Laloi P. Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett. 2006;88(6):Article 063901.

    [31] [31] Baudelet M, Yu J, Bossu M, Jovelet J, Wolf J-P, Amodeo T, Fréjafon E, Laloi P. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett. 2006;89(16):Article 163903.

    [32] [32] Chu Y, Zhang Z, He Q, Chen F, Sheng Z, Zhang D, Jin H, Jiang F, Guo L. Half-life determination of inorganic-organic hybrid nanomaterials in mice using laser-induced breakdown spectroscopy. J Adv Res. 2020;24:353–361.

    [33] [33] Wachter JR, Cremers DA. Determination of uranium in solution using laser-induced breakdown spectroscopy. Appl Spectrosc. 1987;41(6):1042–1048.

    [34] [34] Nakanishi R, Saeki M, Wakaida I, Ohba H. Detection of gadolinium in surrogate nuclear fuel debris using fiber-optic laser-induced breakdown spectroscopy under gamma irradiation. Appl Sci. 2020;10(24):Article 8985.

    [35] [35] Lanza NL, Wiens RC, Clegg SM, Ollila AM, Humphries SD, Newsom HE, Barefield JE. Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars. Appl Opt. 2010;49(13):C211–C217.

    [36] [36] Knight AK, Scherbarth NL, Cremers DA, Ferris MJ. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl Spectrosc. 2000;54(3):331–340.

    [37] [37] Liu C, Ling Z, Zhang J, Wu Z, Bai H, Liu Y. A stand-off laser-induced breakdown spectroscopy (LIBS) system applicable for Martian rocks studies. Remote Sens. 2021;13(23):Article 4773.

    [38] [38] Lin Q, Bian F, Wei Z, Wang S, Duan Y. A hydrogel-based solidification method for the direct analysis of liquid samples by laser-induced breakdown spectroscopy. J Anal At Spectrom. 2017;32(7):1412–1419.

    [39] [39] Aragón C, Aguilera JA, Peñalba F. Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser. Appl Spectrosc. 1999;53(10):1259–1267.

    [40] [40] Shi H, Zhao N, Wang C, Lu CP, Liu LT, Chen D, Ma MJ, Zhang YJ, Liu JG, Liu WQ. Study on measurement of trace heavy metal Ni in water by laser induced breakdown spectroscopy technique. Spectrosc Spectr Anal. 2012;32(1):25–28.

    [41] [41] Fichet P, Mauchien P, Wagner JF, Moulin C. Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy. Anal Chim Acta. 2001;429(2):269–278.

    [42] [42] de Giacomo A, de Bonis A, Dell’Aglio M, de Pascale O, Gaudiuso R, Orlando S, Santagata A, Senesi GS, Taccogna F, Teghil R. Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures. J Phys Chem C. 2011;115(12):5123–5130.

    [43] [43] Aguirre MA, Nikolova H, Hidalgo M, Canals A. Hyphenation of single-drop microextraction with laser-induced breakdown spectrometry for trace analysis in liquid samples: A viability study. Anal Methods. 2015;7(3):877–883.

    [45] [45] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep. 2007;441(2–4):47–189.

    [46] [46] Yong J, Yang Q, Hou X, Chen F. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Sci. 2022;2022:Article 9895418.

    [47] [47] Eisenmann S, Pukhov A, Zigler A. Fine structure of a laser-plasma filament in air. Phys Rev Lett. 2007;98(15):Article 155002.

    [48] [48] Brodeur A, Chien CY, Ilkov FA, Chin SL, Kosareva OG, Kandidov VP. Moving focus in the propagation of ultrashort laser pulses in air. Opt Lett. 1997;22(5):304–306.

    [49] [49] Judge EJ, Heck G, Cerkez EB, Levis RJ. Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy. Anal Chem. 2009;81(7):2658–2663.

    [50] [50] Braun A, Korn G, Liu X, du D, Squier J, Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett. 1995;20(1):73–75.

    [53] [53] Skrodzki PJ, Burger M, Finney LA, Nees J, Jovanovic I. Improved analytical performance of remote laser-induced breakdown spectroscopy via concatenation of filament-driven optical waveguides formed in air. Paper presented at: ICOPS 2022. Proceedings of the 49th IEEE International Conference on Plasma Science; 2022 May 22–26; Seattle, WA.

    [56] [56] Zhao YL, Li GG, Hou HM, Shi JC, Luo SN. CN and C2 formation mechanisms in fs-laser induced breakdown of nitromethane in Ar or N2 atmosphere. J Hazard Mater. 2020;393:Article 122396.

    [57] [57] Sreedhar S, Nageswara Rao E, Manoj Kumar G, Tewari SP, Venugopal Rao S. Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc. 2013;87:121–129.

    [58] [58] Chichkov BN, Momma C, Nolte S, Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A Mater Sci Process. 1996;63(2):109–115.

    [59] [59] Wessel W, Brueckner-Foit A, Mildner J, Englert L, Haag L, Horn A, Wollenhaupt M, Baumert T. Use of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for micro-crack analysis on the surface. Eng Fract Mech. 2010;77(11):1874–1883.

    [60] [60] Lu P, Wu J, Zeng H. Manipulation of plasma grating by impulsive molecular alignment. Appl Phys Lett. 2013;103(22):Article 221113.

    [61] [61] Liu F, Yuan S, He B, Nan J, Khan AQ, Ding L, Zeng H. Enhanced stimulated Raman scattering by femtosecond ultraviolet plasma grating in water. Appl Phys Lett. 2018;112(9):Article 094101.

    [62] [62] Shi L, Li W, Wang Y, Lu X, Ding L, Zeng H. Generation of high-density electrons based on plasma grating induced bragg diffraction in air. Phys Rev Lett. 2011;107(9):Article 095004.

    [63] [63] Varma S, Chen YH, Milchberg HM. Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air. Phys Rev Lett. 2008;101(20):Article 205001.

    [64] [64] Yang X, Wu J, Peng Y, Tong Y, Lu P, Ding L, Xu Z, Zeng H. Plasma waveguide array induced by filament interaction. Opt Lett. 2009;34(24):3806–3808.

    [65] [65] Vinçotte A, Bergé L. Femtosecond optical vortices in air. Phys Rev Lett. 2005;95(19):Article 193901.

    [66] [66] Shih M, Segev M, Salamo G. Three-dimensional spiraling of interacting spatial solitons. Phys Rev Lett. 1997;78(13):2551–2554.

    [67] [67] Królikowski W, Holmstrom SA. Fusion and birth of spatial solitons upon collision. Opt Lett. 1997;22(6):369–371.

    [68] [68] Bergé L, Schmidt MR, Rasmussen JJ, Christiansen PL, Rasmussen KØ. Amalgamation of interacting light beamlets in Kerr-type media. J Opt Soc Am B. 1997;14(10):2550–2562.

    [69] [69] Suntsov S, Abdollahpour D, Papazoglou DG, Tzortzakis S. Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications. Phys Lett. 2009;94:Article 251104.

    [70] [70] Pai C-H, Huang S-Y, Kuo C-C, Lin M-W, Wang J, Chen S-Y, Lee C-H, Lin J-Y. Fabrication of spatial transient-density structures as high-field plasma photonic devices. Phys Plasmas. 2005;12(7):Article 070707.

    [71] [71] Mohamed WTY. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable echelle spectrometer with ICCD camera. Opt Laser Technol. 2008;40(1):30–38.

    [72] [72] Yaroshchyk P, Morrison RJS, Body D, Chadwick BL. Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS. Spectrochim Acta B At Spectrosc. 2005;60(11):1482–1485.

    [73] [73] Zhang D, Nie J, Niu X, Chen F, Hu Z, Wen X, Li Y, Guo L. Time-resolved spectral-image laser-induced breakdown spectroscopy for precise qualitative and quantitative analysis of milk powder quality by fully excavating the matrix information. Food Chem. 2022;386:Article 132763.

    [74] [74] Xiu J, Motto-Ros V, Panczer G, Zheng R, Yu J. Feasibility of wear metal analysis in oils with parts per million and sub-parts per million sensitivities using laser-induced breakdown spectroscopy of thin oil layer on metallic target. Spectrochim Acta B At Spectrosc. 2014;91:24–30.

    [75] [75] Golik SS, Ilyin AA, Babiy MY, Biryukova YS, Lisitsa VV, Bukin OA. Determination of iron in water solution by time-resolved femtosecond laser-induced breakdown spectroscopy. Plasma Sci Technol. 2015;17(11):975–978.

    [76] [76] Habermeier H-U. Pulsed laser deposition—A versatile technique only for high-temperature superconductor thin-film deposition. Appl Surf Sci. 1993;69(1–4):204–211.

    [78] [78] Serna MI, Hasan SMN, Nam S, Bouanani LE, Moreno S, Choi H, Alshareef HN, Minary-Jolandan M, Quevedo-Lopez MA. Low-temperature deposition of layered SnSe2 for heterojunction diodes. Adv Mater Interfaces. 2018;5(16):Article 1800128.

    [79] [79] Hilmi I, Lotnyk A, Gerlach JW, Schumacher P, Rauschenbach B. Research update: Van-der-Waals epitaxy of layered chalcogenide Sb2Te3 thin films grown by pulsed laser deposition. APL Mater. 2017;5(5):Article 050701.

    [81] [81] Ortiz W, Malca C, Barrionuevo D, Aldalbahi A, Pacheco E, Oli N, Feng P. Two-dimensional tungsten disulfide nanosheets and their application in self-powered photodetectors with ultra-high sensitivity and stability. Vacuum. 2022;201:Article 111092.

    [83] [83] Rathod UP, Egede J, Voevodin AA, Shepherd ND. Extrinsic p-type doping of few layered WS2 films with niobium by pulsed laser deposition. Appl Phys Lett. 2018;113(6):Article 062106.

    [85] [85] Lin Z, Li J, Zheng Z, Li L, Yu L, Wang C, Yang G. A floating sheet for efficient photocatalytic water splitting. Adv Energy Mater. 2016;6(15):Article 1600510.

    [86] [86] Liu JR, Bai T, Li TJ, Heng YD, Ge WL, Xiao Y, Sheng W, Sheng YX. Study on pulsed excimer laser deposited films. High Power Laser Part Beams. 2002;14:646–650.

    Tools

    Get Citation

    Copy Citation Text

    Mengyun Hu, Shupeng Xu, Shuai Yuan, Heping Zeng. Breakdown Spectroscopy Induced by Nonlinear Interactions of Femtosecond Laser Filaments and Multidimensional Plasma Gratings[J]. Ultrafast Science, 2023, 3(1): 0013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 14, 2022

    Accepted: Dec. 21, 2022

    Published Online: Dec. 4, 2023

    The Author Email: Xu Shupeng (spxu@lps.ecnu.edu.cn), Zeng Heping (hpzeng@phy.ecnu.edu.cn)

    DOI:10.34133/ultrafastscience.0013

    Topics