Ultrafast Science, Volume. 3, Issue 1, 0049(2023)

Hearing the Heartbeat of Atoms: Unveiling Attosecond Horizons

Jing Li1,2 and Yunquan Liu1,2,3、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
  • 2Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China.
  • show less
    References(139)

    [1] [1] Nobel Prize Outreach AB 2023. Scientific background to the Nobel Prize in Physics 2023. NobelPrize.org.[accessed 9 Nov 2023]

    [2] [2] Bohr N. Nobel Lecture: The structure of the atom. NobelPrize.org. 1922.[accessed 9 Nov 2023]

    [4] [4] Haus HA. Mode-locking of lasers. IEEE J Sel Top Quantum Electron. 2000;6(6):1173–1185.

    [5] [5] DeMaria AJ, Stetser DA, Heynau H. Self mode-locking of lasers with SATURABLE absorbers. Appl Phys Lett. 1966;8(7):174–176.

    [6] [6] Shank CV, Ippen EP. Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Appl Phys Lett. 1974;24(8):373–375.

    [7] [7] Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun. 1985;56(3):219–221.

    [8] [8] Nobel Prize Outreach AB 2023. Scientific background: Groundbreaking inventions in laser physics. NobelPrize.org.[accessed 9 Nov 2023]

    [9] [9] Chen X, Jullien A, Malvache A, Canova L, Borot A, Trisorio A, Durfee CG, Lopez-Martens R. Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber. Opt Lett. 2009;34(10):1588.

    [10] [10] Han Y, Guo Y, Gao B, Ma C, Zhang R, Zhang H. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers. Prog Quantum Electron. 2020;71: Article 100264.

    [11] [11] Agostini P, Fabre F, Mainfray G, Petite G, Rahman NK. Free-free transitions following six-photon ionization of xenon atoms. Phys Rev Lett. 1979;42(17):1127–1130.

    [12] [12] Ferray M, L’Huillier A, Li XF, Lompre LA, Mainfray G, Manus C. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J Phys B Atomic Mol Phys. 1988;21(3):L31–L35.

    [13] [13] L’Huillier A, Schafer KJ, Kulander KC. Theoretical aspects of intense field harmonic generation. J Phys B Atomic Mol Phys. 1991;24(15):3315–3341.

    [14] [14] Kulander KC, Schafer KJ, Krause JL. Dynamics of short-pulse excitation, ionization and harmonic conversion. In: Piraux B, L’Huillier A, Rzążewski K, editors. Super-intense laser—atom physics. Boston (MA): Springer US; 1993. p. 95–110.

    [15] [15] Schafer KJ, Yang B, DiMauro LF, Kulander KC. Above threshold ionization beyond the high harmonic cutoff. Phys Rev Lett. 1993;70(11):1599–1602.

    [16] [16] Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71(13):1994–1997.

    [17] [17] Lewenstein M, Balcou P, Ivanov MY, L’Huillier A, Corkum PB. Theory of high-harmonic generation by low-frequency laser fields. Phys Rev A. 1994;49(3):2117–2132.

    [19] [19] Farkas GY, Tóth C. Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases. Phys Lett A. 1992;168(5–6):447–450.

    [20] [20] Antoine P, L’Huillier A, Lewenstein M. Attosecond pulse trains using high–order harmonics. Phys Rev Lett. 1996;77(7):1234–1237.

    [21] [21] Cionga A, Florescu V, Maquet A, Taïeb R. Target dressing effects in laser-assisted x-ray photoionization. Phys Rev A. 1993;47(3):1830–1840.

    [22] [22] Veniard V, Taieb R, Maquet A. Two-color multiphoton ionization of atoms using high-order harmonic radiation. Phys Rev Lett. 1995;74(21):4141–4164.

    [23] [23] Schins JM, Breger P, Agostini P, Constantinescu RC, Muller HG, Grillon G, Antonetti A, Mysyrowicz A. Observation of laser-assisted auger decay in argon. Phys Rev Lett. 1994;73(16):2180–2183.

    [24] [24] Corkum PB, Burnett NH, Ivanov MY. Subfemtosecond pulses. Opt Lett. 1994;19(22):1870.

    [25] [25] Schafer KJ, Kulander KC. High harmonic generation from ultrafast pump lasers. Phys Rev Lett. 1997;78(4):638–641.

    [26] [26] Christov IP, Murnane MM, Kapteyn HC. High-harmonic generation of Attosecond pulses in the “single-cycle” regime. Phys Rev Lett. 1997;78(7):1251–1254.

    [27] [27] Nisoli M, De Silvestri S, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S, Krausz F. Compression of high-energy laser pulses below 5 fs. Opt Lett. 1997;22(8):522–524.

    [31] [31] Sola IJ, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes JP, Stagira S, et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat Phys. 2006;2(5):319–322.

    [32] [32] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat Commun. 2017;8(1):186.

    [33] [33] Mashiko H, Gilbertson S, Li C, Khan SD, Shakya MM, Moon E, Chang Z. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys Rev Lett. 2008;100(10): Article 103906.

    [34] [34] Feng X, Gilbertson S, Mashiko H, Wang H, Khan SD, Chini M, Wu Y, Zhao K, Chang Z. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys Rev Lett. 2009;103(18): Article 183901.

    [35] [35] Cao W, Lu P, Lan P, Wang X, Yang G. Single-attosecond pulse generation with an intense multicycle driving pulse. Phys Rev A. 2006;74(6): Article 063821.

    [36] [36] Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat Photonics. 2010;4(12):875–879.

    [40] [40] Manzoni C, Cerullo G. Design criteria for ultrafast optical parametric amplifiers. J Opt. 2016;18(10): Article 103501.

    [41] [41] Takahashi EJ, Kanai T, Ishikawa KL, Nabekawa Y, Midorikawa K. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media. Phys Rev Lett. 2008;101(25): Article 253901.

    [43] [43] Schmidt BE, Thiré N, Boivin M, Laramée A, Poitras F, Lebrun G, Ozaki T, Ibrahim H, Légaré F. Frequency domain optical parametric amplification. Nat Commun. 2014;5(1):3643.

    [44] [44] Tate J, Auguste T, Muller HG, Salières P, Agostini P, DiMauro LF. Scaling of wave-packet dynamics in an intense Midinfrared field. Phys Rev Lett. 2007;98(1): Article 013901.

    [45] [45] Shiner AD, Trallero-Herrero C, Kajumba N, Bandulet HC, Comtois D, Légaré F, Giguère M, Kieffer JC, Corkum PB, Villeneuve DM. Wavelength scaling of high harmonic generation efficiency. Phys Rev Lett. 2009;103(7): Article 073902.

    [46] [46] Chipperfield LE, Robinson JS, Tisch JWG, Marangos JP. Ideal waveform to generate the maximum possible electron Recollision energy for any given oscillation period. Phys Rev Lett. 2009;102(6): Article 063003.

    [47] [47] Xue B, Tamaru Y, Fu Y, Yuan H, Lan P, Mücke OD, Suda A, Midorikawa K, Takahashi EJ. A custom-tailored multi-TW optical electric field for gigawatt soft-X-ray isolated attosecond pulses. Ultrafast Sci. 2021;2021:9828026.

    [48] [48] Fu Y, Nishimura K, Shao R, Suda A, Midorikawa K, Lan P, Takahashi EJ. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy. Commun Phys. 2020;3(1):92.

    [50] [50] Takahashi E, Nabekawa Y, Midorikawa K. Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics. Opt Lett. 2002;27(21):1920–1922.

    [51] [51] Takahashi E, Nabekawa Y, Otsuka T, Obara M, Midorikawa K. Generation of highly coherent submicrojoule soft x rays by high-order harmonics. Phys Rev A. 2002;66(2): Article 021802.

    [52] [52] Vampa G, McDonald CR, Orlando G, Klug DD, Corkum PB, Brabec T. Theoretical analysis of high-harmonic generation in solids. Phys Rev Lett. 2014;113(7): Article 073901.

    [54] [54] Luu TT, Wörner HJ. High-order harmonic generation in solids: A unifying approach. Phys Rev B. 2016;94(11): Article 115164.

    [55] [55] Ndabashimiye G, Ghimire S, Wu M, Browne DA, Schafer KJ, Gaarde MB, Reis DA. Solid-state harmonics beyond the atomic limit. Nature. 2016;534(7608):520–523.

    [56] [56] You YS, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam-Mirzaei S, Chini M, Chang Z, Ghimire S. High-harmonic generation in amorphous solids. Nat Commun. 2017;8(1):724.

    [57] [57] Zeng A-W, Bian X-B. Impact of statistical fluctuations on high harmonic generation in liquids. Phys Rev Lett. 2020;124(20): Article 203901.

    [58] [58] Prat E, Reiche S. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses. Phys Rev Lett. 2015;114(24): Article 244801.

    [60] [60] Kang H-S, Ko IS. Attosecond XFEL for pump–probe experiments. Nat Photonics. 2020;14(1):7–8.

    [61] [61] Li J-X, Hatsagortsyan KZ, Galow BJ, Keitel CH. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation-dominated regime. Phys Rev Lett. 2015;115(20): Article 204801.

    [63] [63] Liu W, Zhao Y, Jiao Y, Wang S. Generating high repetition rate X-ray attosecond pulses in a diffraction limited storage ring. Sci Rep. 2023;13(1):14019.

    [65] [65] Gariepy G, Leach J, Kim KT, Hammond TJ, Frumker E, Boyd RW, Corkum PB. Creating high-harmonic beams with controlled orbital angular momentum. Phys Rev Lett. 2014;113(15): Article 153901.

    [66] [66] Mancuso CA, Hickstein DD, Grychtol P, Knut R, Kfir O, Tong XM, Dollar F, Zusin D, Gopalakrishnan M, Gentry C, et al. Strong-field ionization with two-color circularly polarized laser fields. Phys Rev A. 2015;91(3): Article 031402.

    [68] [68] Mancuso CA, Hickstein DD, Dorney KM, Ellis JL, Hasović E, Knut R, Grychtol P, Gentry C, Gopalakrishnan M, Zusin D, et al. Controlling electron-ion rescattering in two-color circularly polarized femtosecond laser fields. Phys Rev A. 2016;93(5): Article 053406.

    [69] [69] Géneaux R, Camper A, Auguste T, Gobert O, Caillat J, Taïeb R, Ruchon T. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nat Commun. 2016;7(1):12583.

    [70] [70] Turpin A, Rego L, Picón A, San Román J, Hernández-García C. Extreme ultraviolet fractional orbital angular momentum beams from high harmonic generation. Sci Rep. 2017;7(1):43888.

    [72] [72] Fang Y, He C, Han M, Ge P, Yu X, Ma X, Deng Y, Liu Y. Strong-field ionization of Ar atoms with a 45 ∘ cross-linearly-polarized two-color laser field. Phys Rev A. 2019;100(1): Article 013414.

    [73] [73] Dorney KM, Rego L, Brooks NJ, San Román J, Liao CT, Ellis JL, Zusin D, Gentry C, Nguyen QL, Shaw JM, et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat Photonics. 2019;13(2):123–130.

    [75] [75] Fang Y, Lu S, Liu Y. Controlling photon transverse orbital angular momentum in high harmonic generation. Phys Rev Lett. 2021;127(27): Article 273901.

    [76] [76] Fang Y, Guo Z, Ge P, Dou Y, Deng Y, Gong Q, Liu Y. Probing the orbital angular momentum of intense vortex pulses with strong-field ionization. Light Sci Appl. 2022;11(1):34.

    [77] [77] Fang Y, Liu Y. Generation and control of extreme ultraviolet free-space optical skyrmions with high harmonic generation. Adv Photonics Nexus. 2023;2(04):046009-1–046009-9.

    [78] [78] Itatani J, Quéré F, Yudin GL, Ivanov MY, Krausz F, Corkum PB. Attosecond streak camera. Phys Rev Lett. 2002;88(17): Article 173903.

    [81] [81] Han M, Ge P, Shao Y, Gong Q, Liu Y. Attoclock photoelectron interferometry with two-color corotating circular fields to probe the phase and the amplitude of emitting wave packets. Phys Rev Lett. 2018;120(7): Article 073202.

    [82] [82] Mairesse Y, Quéré F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys Rev A. 2005;71(1): Article 011401.

    [83] [83] Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov MY, Villeneuve DM, Corkum PB. Measuring and controlling the birth of attosecond XUV pulses. Nat Phys. 2006;2(11):781–786.

    [86] [86] Vincenti H, Quéré F. Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys Rev Lett. 2012;108(11): Article 113904.

    [87] [87] Hammond TJ, Brown GG, Kim KT, Villeneuve DM, Corkum PB. Attosecond pulses measured from the attosecond lighthouse. Nat Photonics. 2016;10(3):171–175.

    [90] [90] Peng P, Marceau C, Hervé M, Corkum PB, Naumov AY, Villeneuve DM. Symmetry of molecular Rydberg states revealed by XUV transient absorption spectroscopy. Nat Commun. 2019;10(1):5269.

    [93] [93] Hu SX, Collins LA. Attosecond pump probe: Exploring ultrafast electron motion inside an atom. Phys Rev Lett. 2006;96(7): Article 073004.

    [95] [95] Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep Prog Phys. 2022;85(6): Article 066401.

    [97] [97] Klünder K, Dahlström JM, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, et al. Probing single-photon ionization on the attosecond time scale. Phys Rev Lett. 2011;106(14): Article 143002.

    [98] [98] Ge P, Fang Y, Guo Z, Ma X, Yu X, Han M, Wu C, Gong Q, Liu Y. Probing the spin-orbit time delay of multiphoton ionization of Kr by bicircular fields. Phys Rev Lett. 2021;126(22): Article 223001.

    [99] [99] Mustary MH, Xu L, Wu W, Haram N, Laban DE, Xu H, He F, Sang RT, Litvinyuk IV. Attosecond delays of high-harmonic emissions from hydrogen isotopes measured by XUV interferometer. Ultrafast Sci. 2022;2022:9834102.

    [100] [100] Guo Z, Ge P, Fang Y, Dou Y, Yu X, Wang J, Gong Q, Liu Y. Probing molecular frame Wigner time delay and electron Wavepacket phase structure of CO molecule. Ultrafast Sci. 2022;2022:9802917.

    [102] [102] Peschel J, Busto D, Plach M, Bertolino M, Hoflund M, Maclot S, Vinbladh J, Wikmark H, Zapata F, Lindroth E, et al. Attosecond dynamics of multi-channel single photon ionization. Nat Commun. 2022;13(1):5205.

    [103] [103] Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi EJ, Yamanouchi K, Midorikawa K. Direct observation of an attosecond electron wave packet in a nitrogen molecule. Sci Adv. 2015;1(8): Article e1500356.

    [106] [106] Yuan K-J, Bandrauk AD. Ultrafast X-ray photoelectron imaging of Attosecond electron dynamics in molecular coherent excitation. Chem A Eur J. 2019;123(7):1328–1336.

    [107] [107] Huang Y, Zhao J, Shu Z, Zhu Y, Liu J, Dong W, Wang X, Lü Z, Zhang D, Yuan J, et al. Ultrafast hole deformation revealed by molecular attosecond interferometry. Ultrafast Sci. 2021;2021:9837107.

    [108] [108] Matsubara T, Nabekawa Y, Ishikawa KL, et al. Attosecond optical and Ramsey-type interferometry by postgeneration splitting of harmonic pulse. Ultrafast Sci. 2022;2022:9858739.

    [109] [109] Nordlund D, Ogasawara H, Bluhm H, Takahashi O, Odelius M, Nagasono M, Pettersson LGM, Nilsson A. Probing the electron delocalization in liquid water and ice at attosecond time scales. Phys Rev Lett. 2007;99(21): Article 217406.

    [113] [113] Cistaro G, Plaja L, Martín F, Picón A. Attosecond x-ray transient absorption spectroscopy in graphene. Phys Rev Res. 2021;3(1): Article 013144.

    [116] [116] Calegari F, Ayuso D, Trabattoni A, Belshaw L, de Camillis S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood JB, et al. Ultrafast charge dynamics in an amino acid induced by attosecond pulses. IEEE J Sel Top Quantum Electron. 2015;21(5):1–12.

    [123] [123] Tzallas P. Quantum correlated atoms in intense laser fields. Nat Phys. 2023;19(4):472–473.

    [126] [126] Naumova N, Sokolov I, Nees J, Maksimchuk A, Yanovsky V, Mourou G. Attosecond electron bunches. Phys Rev Lett. 2004;93(19): Article 195003.

    [128] [128] Hassan MT. Attomicroscopy: From femtosecond to attosecond electron microscopy. J Phys B Atomic Mol Phys. 2018;51(3): Article 032005.

    [129] [129] Li J, Liu Y-Q. Relativistic free electrons based quantum physics. Acta Phys Sin. 2022;71: Article 233302.

    [133] [133] Kozák M, Schönenberger N, Hommelhoff P. Ponderomotive generation and detection of Attosecond free-electron pulse trains. Phys Rev Lett. 2018;120(10): Article 103203.

    [134] [134] Kozák M, Eckstein T, Schönenberger N, Hommelhoff P. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat Phys. 2018;14(2):121–125.

    [135] [135] Vanacore GM, Madan I, Berruto G, Wang K, Pomarico E, Lamb RJ, McGrouther D, Kaminer I, Barwick B, García de Abajo FJ, et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat Commun. 2018;9(1):2694.

    [136] [136] Morimoto Y, Baum P. Attosecond control of electron beams at dielectric and absorbing membranes. Phys Rev A. 2018;97(3): Article 033815.

    [137] [137] Nabben D, Kuttruff J, Stolz L, Ryabov A, Baum P. Attosecond electron microscopy of sub-cycle optical dynamics. Nature. 2023;619(7968):63–67.

    [138] [138] García De Abajo FJ, Konečná A. Optical modulation of electron beams in free space. Phys Rev Lett. 2021;126(12): Article 123901.

    [139] [139] García De Abajo FJ, Ropers C. Spatiotemporal electron beam focusing through parallel interactions with shaped optical fields. Phys Rev Lett. 2023;130(24): Article 246901.

    Tools

    Get Citation

    Copy Citation Text

    Jing Li, Yunquan Liu. Hearing the Heartbeat of Atoms: Unveiling Attosecond Horizons[J]. Ultrafast Science, 2023, 3(1): 0049

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 20, 2023

    Accepted: Nov. 3, 2023

    Published Online: Dec. 4, 2023

    The Author Email: Liu Yunquan (Yunquan.liu@pku.edu.cn)

    DOI:10.34133/ultrafastscience.0049

    Topics