High Power Laser Science and Engineering, Volume. 4, Issue 3, 03000e25(2016)

Physics and applications with laser-induced relativistic shock waves

S. Eliezer1,2, J. M. Martinez-Val1, Z. Henis2、*, N. Nissim2, S. V. Pinhasi3, A. Ravid2, M. Werdiger2, and E. Raicher2
Author Affiliations
  • 1Institute of Nuclear Fusion, Polytechnic University of Madrid, Spain
  • 2Applied Physics Division, Soreq NRC Yavne, Israel
  • 342 Beery, Rehovot, Israel
  • show less
    Figures & Tables(15)
    (a) Displays the capacitor model where the ponderomotive force dominates the interaction; (b) shows the DL of the negative and positive charges. (c) The shock wave description in the laboratory frame of reference.
    The shock wave compression $\unicode[STIX]{x1D705}=\unicode[STIX]{x1D70C}/\unicode[STIX]{x1D70C}_{0}$ as a function of the dimensionless shock wave pressure $\unicode[STIX]{x1D6F1}=P/\unicode[STIX]{x1D70C}_{0}c^{2}$ for $\unicode[STIX]{x1D6E4}=5/3$.
    The dimensionless shock wave pressure $\unicode[STIX]{x1D6F1}=P/(\unicode[STIX]{x1D70C}_{0}c^{2})$ versus the dimensionless laser irradiance $\unicode[STIX]{x1D6F1}_{L}=I_{L}/(\unicode[STIX]{x1D70C}_{0}c^{3})$ in the domain $10^{-4}. The inserted table shows numerical values in the area $10^{-4}.
    The dimensionless shock wave velocity $u_{s}/c$ and the particle velocity $u_{p}/c$ in the laboratory frame of reference versus the dimensionless laser irradiance $\unicode[STIX]{x1D6F1}_{L}=I_{L}/(\unicode[STIX]{x1D70C}_{0}c^{3})$ in the domain $10^{-4}. The inserted table shows numerical values in the area $10^{-4}.
    (a) The speed of sound in units of speed of light, $c_{S}/c$ and (b) the ratio of shock velocity to the rarefaction velocity, $u_{s}/c_{rw}$ as a function of the dimensionless laser irradiance $\unicode[STIX]{x1D6F1}_{L}=I_{L}/(\unicode[STIX]{x1D70C}_{0}c^{3})$.
    Micro-foil velocity as a function of laser pulse duration $t$ in units of of $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70C}_{0}c^{2}l/(2I)$, where $\unicode[STIX]{x1D70C}_{0}$ is the initial density, $l$ is the foil thickness and $I$ is the laser intensity [$\text{erg}/(\text{s}~\text{cm}^{2})$]. (a) Laser pulse duration up to $15\unicode[STIX]{x1D70F}$, (b) laser pulse duration up to $500\unicode[STIX]{x1D70F}$.
    Flow ($u_{p0}$, $u_{p1}=u_{p2}$) and shock waves ($u_{s1}$, $u_{s2}$) velocities after impact of flyer and target in the laboratory frame of reference. The flow velocities ($v_{0}$, $v_{1}$, $v_{2}=v_{1}$, $v_{3}=v_{0}$) are also defined in the shock wave reference frames S1 and S2. The lower figure shows a schematic picture before collision.
    The compressions of the shocked target $\unicode[STIX]{x1D705}_{1}$ and the shocked flyer $\unicode[STIX]{x1D705}_{2}$ for $\unicode[STIX]{x1D70C}_{0t}/\unicode[STIX]{x1D70C}_{0f}=K=1000$.
    The pressures of the dimensionless shocked target $\unicode[STIX]{x1D6F1}_{1}$ and the shocked flyer $\unicode[STIX]{x1D6F1}_{2}$ for $\unicode[STIX]{x1D70C}_{0t}/\unicode[STIX]{x1D70C}_{0f}=K=1000$.
    The shock and particle velocities accordingly, $u_{s}$ and $u_{p}$, for $\unicode[STIX]{x1D70C}_{0t}/\unicode[STIX]{x1D70C}_{0f}=K=1000$.
    Contours of equal $\unicode[STIX]{x1D70C}\cdot R$ as a function of ions and electrons temperatures for DT.
    Electrons $T_{e}$ and protons $T_{i}$ temperatures as a function of time for a DT case satisfying the ignition criterion.
    The fast ignition scheme by the impact of a high irradiance laser accelerated foil. (a) The pre-compression by the nanosecond laser beams. (b)–(d) The sequence of shock waves leading to the ignition hot spot.
    The fast ignition scheme of a detonation wave.
    The fusion energy $Q$ per unit mass released in the shock wave forward direction as a function of time in the shocked volume for (a) $\unicode[STIX]{x1D6E4}=3$ and (b) $\unicode[STIX]{x1D6E4}=5/3$.
    Tools

    Get Citation

    Copy Citation Text

    S. Eliezer, J. M. Martinez-Val, Z. Henis, N. Nissim, S. V. Pinhasi, A. Ravid, M. Werdiger, E. Raicher. Physics and applications with laser-induced relativistic shock waves[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e25

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: HIGH INTENSITY LASER AND ATTOSECOND

    Received: Jun. 2, 2016

    Accepted: Jun. 26, 2016

    Published Online: Nov. 7, 2016

    The Author Email: Z. Henis (zoharhenis@gmail.com)

    DOI:10.1017/hpl.2016.24

    Topics