Optics and Precision Engineering, Volume. 28, Issue 10, 2138(2020)

Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator

ZOU Yan-hui1,*... WANG Yi-meng1, ZHANG Xiao-xue1, WU Zhen-lin1, CHEN Zhuo2, BO Shu-hui2,3, LIU Ruo-nan4, LI Zhi-hua4, WANG Di5, TAN Qing-gui5, GU Yi-ying1, ZHAO Ming-shan1 and HAN Xiu-you1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    References(58)

    [1] [1] TIAN ZH CH, JIN X M, ZHU Y P. Principles and Applications of Microwave Photonic Electronic Warfare Technology[M]. Beijing: Science Press, 2018.(in Chinese)

              TIAN ZH CH, JIN X M, ZHU Y P. Principles and Applications of Microwave Photonic Electronic Warfare Technology[M]. Beijing: Science Press, 2018.(in Chinese)

    [2] [2] ZHU N H, LI M, HAO Y. Optoelectronic devices and integration technologies[J]. Scientia Sinica. Informationis, 2016, 46(8): 1156-1174.(in Chinese)

              ZHU N H, LI M, HAO Y. Optoelectronic devices and integration technologies[J]. Scientia Sinica. Informationis, 2016, 46(8): 1156-1174.(in Chinese)

    [3] [3] GAO H, DENG Y, ZHANG J P, et al.. Analysis and prospects of phased array radar based on microwave photonics[J]. Journal of Radars, 2019, 8(2): 251-261.(in Chinese)

              GAO H, DENG Y, ZHANG J P, et al.. Analysis and prospects of phased array radar based on microwave photonics[J]. Journal of Radars, 2019, 8(2): 251-261.(in Chinese)

    [4] [4] MARPAUNG D, YAO J P, CAPMANY J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13(2): 80-90.

              MARPAUNG D, YAO J P, CAPMANY J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13(2): 80-90.

    [5] [5] LI J Y, YU L J, LIU J G. Broadband electro-optical modulator and development trend of new silicon-based hybrid integrated modulator[J]. ZTE Technology Journal, 2017, 23(5): 15-20.(in Chinese)

              LI J Y, YU L J, LIU J G. Broadband electro-optical modulator and development trend of new silicon-based hybrid integrated modulator[J]. ZTE Technology Journal, 2017, 23(5): 15-20.(in Chinese)

    [6] [6] WOOTEN E L, KISSA K M, YI-YAN A, et al.. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 69-82.

              WOOTEN E L, KISSA K M, YI-YAN A, et al.. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 69-82.

    [7] [7] RAO A, PATIL A, RABIEI P, et al.. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz[J]. Optics Letters, 2016, 41(24): 5700-5703.

              RAO A, PATIL A, RABIEI P, et al.. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz[J]. Optics Letters, 2016, 41(24): 5700-5703.

    [8] [8] WEIGEL P O, ZHAO J, FANG K, et al.. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J]. Optics Express, 2018, 26(18): 23728-23739.

              WEIGEL P O, ZHAO J, FANG K, et al.. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J]. Optics Express, 2018, 26(18): 23728-23739.

    [9] [9] WANG C, ZHANG M, STERN B, et al.. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555.

              WANG C, ZHANG M, STERN B, et al.. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555.

    [10] [10] HE M B, XU M Y, REN Y X, et al.. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364.

              HE M B, XU M Y, REN Y X, et al.. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364.

    [11] [11] LEE M, KATZ H E, ERBEN C, et al.. Broadband modulation of light by using an electro-optic polymer[J]. Science, 2002, 298(5597): 1401-1403.

              LEE M, KATZ H E, ERBEN C, et al.. Broadband modulation of light by using an electro-optic polymer[J]. Science, 2002, 298(5597): 1401-1403.

    [12] [12] LIU J, XU G, LIU F, et al.. Recent advances in polymer electro-optic modulators[J]. RSC Advances, 2015, 5(21): 15784-15794.

              LIU J, XU G, LIU F, et al.. Recent advances in polymer electro-optic modulators[J]. RSC Advances, 2015, 5(21): 15784-15794.

    [13] [13] LIU A S, LIAO L, RUBIN D, et al.. High-speed optical modulation based on carrier depletion in a silicon waveguide[J]. Optics Express, 2007, 15(2): 660-668.

              LIU A S, LIAO L, RUBIN D, et al.. High-speed optical modulation based on carrier depletion in a silicon waveguide[J]. Optics Express, 2007, 15(2): 660-668.

    [14] [14] DONG P, CHEN L, CHEN Y K. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators[J]. Optics Express, 2012, 20(6): 6163-6169.

              DONG P, CHEN L, CHEN Y K. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators[J]. Optics Express, 2012, 20(6): 6163-6169.

    [15] [15] LI M F, WANG L, LI X, et al.. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications[J]. Photonics Research, 2018, 6(2): 109-116.

              LI M F, WANG L, LI X, et al.. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications[J]. Photonics Research, 2018, 6(2): 109-116.

    [16] [16] QI Y, AN J M, WANG Y, et al.. Principle and progress of silicon-organic hybrid electro-optic modulators[J]. Laser & Optoelectronics Progress, 2015, 52(7): 070004.(in Chinese)

              QI Y, AN J M, WANG Y, et al.. Principle and progress of silicon-organic hybrid electro-optic modulators[J]. Laser & Optoelectronics Progress, 2015, 52(7): 070004.(in Chinese)

    [17] [17] ZHANG X Y, CHUNG C J, HOSSEINI A, et al.. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide[J]. Journal of Lightwave Technology, 2016, 34(12): 2941-2951.

              ZHANG X Y, CHUNG C J, HOSSEINI A, et al.. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide[J]. Journal of Lightwave Technology, 2016, 34(12): 2941-2951.

    [18] [18] KOOS C, VORREAU P, VALLAITIS T, et al.. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nature Photonics, 2009, 3(4): 216.

              KOOS C, VORREAU P, VALLAITIS T, et al.. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nature Photonics, 2009, 3(4): 216.

    [19] [19] ALLOATTI L, PALMER R, DIEBOLD S, et al.. 100GHz silicon-organic hybrid modulator[J]. Light: Science & Applications, 2014, 3(5): e173.

              ALLOATTI L, PALMER R, DIEBOLD S, et al.. 100GHz silicon-organic hybrid modulator[J]. Light: Science & Applications, 2014, 3(5): e173.

    [20] [20] WOLF S, ZWICKEL H, HARTMANN W, et al.. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 gbit/s on-off keying[J]. Scientific Reports, 8(1): 2598.

              WOLF S, ZWICKEL H, HARTMANN W, et al.. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 gbit/s on-off keying[J]. Scientific Reports, 8(1): 2598.

    [21] [21] UMMETHALA S, KEMAL J N, LAUERMANN M, et al.. Capacitively coupled silicon-organic hybrid modulator for 200 gbit/s PAM-4 signaling[C].Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA, 2019.

              UMMETHALA S, KEMAL J N, LAUERMANN M, et al.. Capacitively coupled silicon-organic hybrid modulator for 200 gbit/s PAM-4 signaling[C].Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA, 2019.

    [22] [22] KIENINGER C, KUTUVANTAVIDA Y, ELDER D L, et al.. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator[J]. Optica, 2018, 5(6): 739.

              KIENINGER C, KUTUVANTAVIDA Y, ELDER D L, et al.. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator[J]. Optica, 2018, 5(6): 739.

    [23] [23] KIENINGER C, FLLNER C, ZWICKEL H, et al.. SOH Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss[C].Optical Fiber Communication Conference (OFC) 2020. San Diego, California. Washington, D.C.: OSA, 2020.

              KIENINGER C, FLLNER C, ZWICKEL H, et al.. SOH Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss[C].Optical Fiber Communication Conference (OFC) 2020. San Diego, California. Washington, D.C.: OSA, 2020.

    [24] [24] LEUTHOLD J, KOOS C, FREUDE W, et al.. Silicon-organic hybrid electro-optical devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 114-126.

              LEUTHOLD J, KOOS C, FREUDE W, et al.. Silicon-organic hybrid electro-optical devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 114-126.

    [25] [25] HENI W, KUTUVANTAVIDA Y, HAFFNER C, et al.. Silicon-organic and plasmonic-organic hybrid photonics[J]. ACS Photonics, 2017,4(7): 1576-1590.

              HENI W, KUTUVANTAVIDA Y, HAFFNER C, et al.. Silicon-organic and plasmonic-organic hybrid photonics[J]. ACS Photonics, 2017,4(7): 1576-1590.

    [26] [26] SATO H, MIURA H, QIU F, et al.. Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation[J]. Optics Express, 2017, 25(2): 768-775.

              SATO H, MIURA H, QIU F, et al.. Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation[J]. Optics Express, 2017, 25(2): 768-775.

    [27] [27] YOKOYAMA S, LU G W, CHENG X Y, et al.. Long-term stable electro-optic polymer for hybrid integration[C].Optical Fiber Communication Conference (OFC) 2019. San Diego, California. Washington, D.C.: OSA, 2019.

              YOKOYAMA S, LU G W, CHENG X Y, et al.. Long-term stable electro-optic polymer for hybrid integration[C].Optical Fiber Communication Conference (OFC) 2019. San Diego, California. Washington, D.C.: OSA, 2019.

    [28] [28] BAEHR-JONES T, HOCHBERG M, WALKER C C, et al.. High-Q optical resonators in silicon-on-insulator-based slot waveguides[J]. Applied Physics Letters, 2005, 86(8): 081101.

              BAEHR-JONES T, HOCHBERG M, WALKER C C, et al.. High-Q optical resonators in silicon-on-insulator-based slot waveguides[J]. Applied Physics Letters, 2005, 86(8): 081101.

    [29] [29] DENG Q Z, LIU L, LI X B, et al.. Strip-slot waveguide mode converter based on symmetric multimode interference[J]. Optics Letters, 2014, 39(19): 5665-5668.

              DENG Q Z, LIU L, LI X B, et al.. Strip-slot waveguide mode converter based on symmetric multimode interference[J]. Optics Letters, 2014, 39(19): 5665-5668.

    Tools

    Get Citation

    Copy Citation Text

    ZOU Yan-hui, WANG Yi-meng, ZHANG Xiao-xue, WU Zhen-lin, CHEN Zhuo, BO Shu-hui, LIU Ruo-nan, LI Zhi-hua, WANG Di, TAN Qing-gui, GU Yi-ying, ZHAO Ming-shan, HAN Xiu-you. Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator[J]. Optics and Precision Engineering, 2020, 28(10): 2138

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 19, 2020

    Accepted: --

    Published Online: Nov. 25, 2020

    The Author Email: Yan-hui ZOU (zouyanhui@mail.dlut.edu.cn)

    DOI:10.37188/ope.20202810.2138

    Topics