Journal of the Chinese Ceramic Society, Volume. 51, Issue 10, 2689(2023)

Research Progress on Reversible Protonic Ceramic Electrochemical Cell

WANG Zhou1... ZHOU Xiaoliang1,2, LIU Limin1, CHEN Hanyu1, QIAN Xinyuan1, HE Feifan1, SHENG Yang1 and JIANG Xingzhou1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(63)

    [1] [1] YUKSEL I, KAYGUSUZ K. Renewable energy sources for clean and sustainable energy policies in Turkey[J]. Renew Sustain Energy Rev, 2011, 15(8): 4132-4144.

    [2] [2] NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. Int J Hydrog Energy, 2008, 33(9): 2337-2354.

    [3] [3] EBBESEN S D, JENSEN S H, HAUCH A, et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chem Rev, 2014, 114(21): 10697-10734.

    [4] [4] HAUCH A, KNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118.

    [5] [5] SU H R, HU Y H. Degradation issues and stabilization strategies of protonic ceramic electrolysis cells for steam electrolysis[J]. Energy Sci Eng, 2022, 10(5): 1706-1725.

    [6] [6] MOLIN S, GAZDA M, JASINSKI P. Conductivity improvement of Ce0.8Gd0.2O1.9 solid electrolyte[J]. J Rare Earths, 2009, 27(4): 655-660.

    [7] [7] FABBRI E, PERGOLESI D, TRAVERSA E. Materials challenges toward proton-conducting oxidefuelcells: A critical review[J]. Chem Soc Rev, 2010, 39(11): 4355-4369.

    [8] [8] LEI L B, ZHANG J H, YUAN Z H, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Adv Funct Mater, 2019, 29(37): 1903805.

    [9] [9] GMEZ S Y, HOTZA D. Current developments in reversible solid oxide fuel cells[J]. Renew Sustain Energy Rev, 2016, 61: 155-174.

    [10] [10] MALERD-FJELD H, CLARK D, YUSTE-TIRADOS I, et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss[J]. Nat Energy, 2017, 2(12): 923-931.

    [11] [11] DUAN C, HUANG J, SULLIVAN N, et al. Proton-conducting oxides for energy conversion and storage[J]. Applied Physics Reviews, 2020, 7(1): 1-40.

    [12] [12] GENESTE G. Proton transfer in barium zirconate: Lattice reorganization, Landau-Zener curve-crossing approach[J]. Solid State Ion, 2018, 323: 172-202.

    [13] [13] KREUER K D. Proton conductivity: Materials and applications[J]. Chem Mater, 1996, 8(3): 610-641.

    [14] [14] WANG H N, WANG X B, MENG B, et al. Perovskite-based mixed protonic-electronic conducting membranes for hydrogen separation: Recent status and advances[J]. J Ind Eng Chem, 2018, 60: 297-306.

    [15] [15] WANG W, MEDVEDEV D, SHAO Z P. Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells[J]. Adv Funct Mater, 2018, 28(48): 1802592.

    [16] [16] ZUO C, ZHA S, LIU M, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells[J]. Adv Mater, 2006, 18(24): 3318-3320.

    [17] [17] WANG S W, ZHAO F, ZHANG L L, et al. Synthesis of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conducting ceramic by a modified Pechini method[J]. Solid State Ion, 2012, 213: 29-35.

    [18] [18] MATSUMOTO H, KAWASAKI Y, ITO N, et al. Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants[J]. Electrochem Solid-State Lett, 2007, 10(4): B77.

    [19] [19] ZHAO F, WANG S W, DIXON L, et al. Novel BaCe0.7In0.2Yb0.1O3- proton conductor as electrolyte for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2011, 196(18): 7500-7504.

    [20] [20] ZHAO F, LIU Q A, WANG S W, et al. Synthesis and characterization of BaIn0.3-xYxCe0.7O3-δ (x=0, 0.1, 0.2, 0.3) proton conductors[J]. Int J Hydrog Energy, 2010, 35(9): 4258-4263.

    [21] [21] KATAHIRA K, KOHCHI Y, SHIMURA T, et al. Protonic conduction in Zr-substituted BaCeO3[J]. Solid State Ion, 2000, 138(1-2): 91-98.

    [22] [22] WANG B, BI L, ZHAO X S. Exploring the role of NiO as a sintering aid in BaZr0.1Ce0.7Y0.2O3-δ electrolyte for proton-conducting solid oxide fuel cells[J]. J Power Sources, 2018, 399: 207-214.

    [23] [23] ZHANG Z Z, CHEN L H, LI Q H, et al. High performance In, Ta and Y-doped BaCeO3 electrolyte membrane for proton-conducting solid oxide fuel cells[J]. Solid State Ion, 2018, 323: 25-31.

    [24] [24] BABILO P, UDA T, HAILE S M. Processing of yttrium-doped Barium zirconate for high proton conductivity[J]. J Mater Res, 2007, 22(5): 1322-1330.

    [25] [25] LYAGAEVA J, DANILOV N, VDOVIN G, et al. A new Dy-doped BaCeO3-BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells[J]. J Mater Chem A, 2016, 4(40): 15390-15399.

    [26] [26] AFIF A, RADENAHMAD N, LIM C M, et al. Structural study and proton conductivity in BaCe0.7Zr0.25-xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)[J]. Int J Hydrog Energy, 2016, 41(27): 11823-11831.

    [27] [27] KANNAN R, GILL S, MAFFEI N, et al. BaCe0.85-xZrxSm0.15O3-δ (0.01<x<0.3) (BCZS): Effect of Zr content in BCZS on chemical stability in CO2 and H2O vapor, and proton conductivity[J]. J Electrochem Soc, 2013, 160(1): F18-F26.

    [28] [28] LYAGAEVA J, ANTONOV B, DUNYUSHKINA L, et al. Acceptor doping effects on microstructure, thermal and electrical properties of proton-conducting BaCe0.5Zr0.3Ln0.2O3-δ (Ln=Yb, Gd, Sm, Nd, La or Y) ceramics for solid oxide fuel cell applications[J]. Electrochim Acta, 2016, 192: 80-88.

    [29] [29] COORS W G, MANERBINO A. Characterization of composite cermet with 68% NiO and BaCe0.2Zr0.6Y0.2O3-δ[J]. J Membr Sci, 2011, 376(1-2): 50-55.

    [30] [30] YANG L, WANG S Z, BLINN K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ[J]. Science, 2009, 326(5949): 126-129.

    [31] [31] SONG S H, YOON S E, CHOI J, et al. A high-performance ceramic composite anode for protonic ceramic fuel cells based on lanthanum strontium vanadate[J]. Int J Hydrog Energy, 2014, 39(29): 16534-16540.

    [32] [32] PENG R R, WU T Z, LIU W, et al. Cathode processes and materials for solid oxidefuelcells with proton conductors as electrolytes[J]. J Mater Chem, 2010, 20(30): 6218-6225.

    [33] [33] WU T Z, PENG R R, XIA C R. Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ composite cathodes for proton-conducting solid oxide fuel cells[J]. Solid State Ion, 2008, 179(27-32): 1505-1508.

    [34] [34] BI L, BOULFRAD S, TRAVERSA E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides[J]. Chem Soc Rev, 2014, 43(24): 8255-8270.

    [35] [35] HE F, SONG D, PENG R R, et al. Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3-δ[J]. J Power Sources, 2010, 195(11): 3359-3364.

    [36] [36] TIAN H C, LI W Y, MA L, et al. Deconvolution of water-splitting on the triple-conducting ruddlesden-popper-phase anode for protonic ceramic electrolysis cells[J]. ACS Appl Mater Interfaces, 2020, 12(44): 49574-49585.

    [37] [37] WU W, DING H P, ZHANG Y Y, et al. Hydrogen production: 3D self-architectured steam electrode enabled efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600 ℃[J]. Adv Sci, 2018, 5(11): 1870070.

    [38] [38] XIA Y P, JIN Z Z, WANG H Q, et al. A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance[J]. J Mater Chem A, 2019, 7(27): 16136-16148.

    [39] [39] XU X, WANG H Q, FRONZI M, et al. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance[J]. J Mater Chem A, 2019, 7(36): 20624-20632.

    [40] [40] LIANG M Z, SONG Y F, LIU D L, et al. Magnesium tuned triple conductivity and bifunctionality of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite towards reversible protonic ceramic electrochemical cells[J]. Appl Catal B Environ, 2022, 318: 121868.

    [41] [41] WANG N, TORIUMI H, SATO Y, et al. La0.8Sr0.2Co1-xNixO3-δ as the efficient triple conductor air electrode for protonic ceramic cells[J]. ACS Appl Energy Mater, 2021, 4(1): 554-563.

    [42] [42] SAQIB M, CHOI I G, BAE H, et al. Transition from perovskite to misfit-layered structure materials: A highly oxygen deficient and stable oxygen electrode catalyst[J]. Energy Environ Sci, 2021, 14(4): 2472-2484.

    [43] [43] LIU Z Q, TANG Z J, SONG Y F, et al. High-entropy perovskite oxide: A new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells[J]. Nano Micro Lett, 2022, 14(1): 1-16.

    [44] [44] ZHOU Y C, LIU E Z, CHEN Y, et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells[J]. ACS Energy Lett, 2021: 1511-1520.

    [45] [45] ZHOU Y C, ZHANG W L, KANE N, et al. An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2021, 31(40): 2105386.

    [46] [46] ZHU F, HE F, LIU D L, et al. A surface reconfiguration of a perovskite air electrode enables an active and durable reversible protonic ceramic electrochemical cell[J]. Energy Storage Mater, 2022, 53: 754-762.

    [47] [47] HE F, LIU S A, WU T, et al. Catalytic self-assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2022, 32(48): 2206756.

    [48] [48] SONG Y F, LIU J P, WANG Y H, et al. Nanocomposites: A new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells[J]. Adv Energy Mater, 2021, 11(36): 2101899.

    [49] [49] XU K, ZHANG H, XU Y S, et al. An efficient steam‐induced heterostructured air electrode for protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2022, 32(23): 2110998.

    [50] [50] PEI K, ZHOU Y C, XU K, et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells[J]. Nat Commun, 2022, 13(1): 2207.

    [51] [51] LIU Z Q, CHENG D F, ZHU Y L, et al. Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells[J]. Chem Eng J, 2022, 450: 137787.

    [52] [52] DING H P, WU W, JIANG C, et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production[J]. Nat Commun, 2020, 11(1): 1907.

    [53] [53] BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485.

    [54] [54] LI G D, GOU Y J, REN R Z, et al. Fluorinated Pr2NiO4+δ as high-performance air electrode for tubular reversible protonic ceramic cells[J]. J Power Sources, 2021, 508: 230343.

    [55] [55] LIU Z Q, CHEN Y, YANG G M, et al. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells[J]. Appl Catal B Environ, 2022, 319: 121929.

    [56] [56] TANG W, DING H P, BIAN W J, et al. Understanding of A-site deficiency in layered perovskites: Promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells[J]. J Mater Chem A, 2020, 8(29): 14600-14608.

    [57] [57] XUE G Y, LI J, WANG H Q, et al. (Pr0.9La0.1)1.9(Ni0.7Cu0.3)0.9Mn0.1O4+δ nanofiber cathode with Pr site cation defect prepared by electrospinning and its application in reversible fuel cells[J]. J Power Sources, 2022, 552: 232220.

    [58] [58] TARUTIN A, LYAGAEVA J, FARLENKOV A, et al. A reversible protonic ceramic cell with symmetrically designed PrNiO4+δ-based electrodes: Fabrication and electrochemical features[J]. Materials, 2018, 12(1): 118.

    [59] [59] GAO Z P, DING X F, DING D, et al. Infiltrated Pr2NiO4 as promising bi-electrode for symmetrical solid oxide fuel cells[J]. Int J Hydrog Energy, 2018, 43(18): 8953-8961.

    [60] [60] NICOLLET C, FLURA A, VIBHU V, et al. An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone[J]. Int J Hydrog Energy, 2016, 41(34): 15538-15544.

    [61] [61] LIU Z J, ZHOU M Y, CHEN M L, et al. A high-performance intermediate-to-low temperature protonic ceramic fuel cell with in situ exsolved nickel nanoparticles in the anode[J]. Ceram Int, 2020, 46(12): 19952-19959.

    [62] [62] ZHANG H, ZHOU Y C, PEI K, et al. An efficient and durable anode for ammonia protonic ceramic fuel cells[J]. Energy Environ Sci, 2022, 15(1): 287-295.

    [63] [63] WANG B, BI L, ZHAO X S. Fabrication of one-step co-fired proton-conducting solid oxide fuel cells with the assistance of microwave sintering[J]. J Eur Ceram Soc, 2018, 38(16): 5620-5624

    Tools

    Get Citation

    Copy Citation Text

    WANG Zhou, ZHOU Xiaoliang, LIU Limin, CHEN Hanyu, QIAN Xinyuan, HE Feifan, SHENG Yang, JIANG Xingzhou. Research Progress on Reversible Protonic Ceramic Electrochemical Cell[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2689

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 11, 2023

    Accepted: --

    Published Online: Nov. 26, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics