Journal of the Chinese Ceramic Society, Volume. 51, Issue 10, 2689(2023)
Research Progress on Reversible Protonic Ceramic Electrochemical Cell
[1] [1] YUKSEL I, KAYGUSUZ K. Renewable energy sources for clean and sustainable energy policies in Turkey[J]. Renew Sustain Energy Rev, 2011, 15(8): 4132-4144.
[2] [2] NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. Int J Hydrog Energy, 2008, 33(9): 2337-2354.
[3] [3] EBBESEN S D, JENSEN S H, HAUCH A, et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chem Rev, 2014, 114(21): 10697-10734.
[4] [4] HAUCH A, KNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118.
[5] [5] SU H R, HU Y H. Degradation issues and stabilization strategies of protonic ceramic electrolysis cells for steam electrolysis[J]. Energy Sci Eng, 2022, 10(5): 1706-1725.
[6] [6] MOLIN S, GAZDA M, JASINSKI P. Conductivity improvement of Ce0.8Gd0.2O1.9 solid electrolyte[J]. J Rare Earths, 2009, 27(4): 655-660.
[7] [7] FABBRI E, PERGOLESI D, TRAVERSA E. Materials challenges toward proton-conducting oxidefuelcells: A critical review[J]. Chem Soc Rev, 2010, 39(11): 4355-4369.
[8] [8] LEI L B, ZHANG J H, YUAN Z H, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Adv Funct Mater, 2019, 29(37): 1903805.
[9] [9] GMEZ S Y, HOTZA D. Current developments in reversible solid oxide fuel cells[J]. Renew Sustain Energy Rev, 2016, 61: 155-174.
[10] [10] MALERD-FJELD H, CLARK D, YUSTE-TIRADOS I, et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss[J]. Nat Energy, 2017, 2(12): 923-931.
[11] [11] DUAN C, HUANG J, SULLIVAN N, et al. Proton-conducting oxides for energy conversion and storage[J]. Applied Physics Reviews, 2020, 7(1): 1-40.
[12] [12] GENESTE G. Proton transfer in barium zirconate: Lattice reorganization, Landau-Zener curve-crossing approach[J]. Solid State Ion, 2018, 323: 172-202.
[13] [13] KREUER K D. Proton conductivity: Materials and applications[J]. Chem Mater, 1996, 8(3): 610-641.
[14] [14] WANG H N, WANG X B, MENG B, et al. Perovskite-based mixed protonic-electronic conducting membranes for hydrogen separation: Recent status and advances[J]. J Ind Eng Chem, 2018, 60: 297-306.
[15] [15] WANG W, MEDVEDEV D, SHAO Z P. Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells[J]. Adv Funct Mater, 2018, 28(48): 1802592.
[16] [16] ZUO C, ZHA S, LIU M, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells[J]. Adv Mater, 2006, 18(24): 3318-3320.
[17] [17] WANG S W, ZHAO F, ZHANG L L, et al. Synthesis of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conducting ceramic by a modified Pechini method[J]. Solid State Ion, 2012, 213: 29-35.
[18] [18] MATSUMOTO H, KAWASAKI Y, ITO N, et al. Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants[J]. Electrochem Solid-State Lett, 2007, 10(4): B77.
[19] [19] ZHAO F, WANG S W, DIXON L, et al. Novel BaCe0.7In0.2Yb0.1O3- proton conductor as electrolyte for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2011, 196(18): 7500-7504.
[20] [20] ZHAO F, LIU Q A, WANG S W, et al. Synthesis and characterization of BaIn0.3-xYxCe0.7O3-δ (x=0, 0.1, 0.2, 0.3) proton conductors[J]. Int J Hydrog Energy, 2010, 35(9): 4258-4263.
[21] [21] KATAHIRA K, KOHCHI Y, SHIMURA T, et al. Protonic conduction in Zr-substituted BaCeO3[J]. Solid State Ion, 2000, 138(1-2): 91-98.
[22] [22] WANG B, BI L, ZHAO X S. Exploring the role of NiO as a sintering aid in BaZr0.1Ce0.7Y0.2O3-δ electrolyte for proton-conducting solid oxide fuel cells[J]. J Power Sources, 2018, 399: 207-214.
[23] [23] ZHANG Z Z, CHEN L H, LI Q H, et al. High performance In, Ta and Y-doped BaCeO3 electrolyte membrane for proton-conducting solid oxide fuel cells[J]. Solid State Ion, 2018, 323: 25-31.
[24] [24] BABILO P, UDA T, HAILE S M. Processing of yttrium-doped Barium zirconate for high proton conductivity[J]. J Mater Res, 2007, 22(5): 1322-1330.
[25] [25] LYAGAEVA J, DANILOV N, VDOVIN G, et al. A new Dy-doped BaCeO3-BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells[J]. J Mater Chem A, 2016, 4(40): 15390-15399.
[26] [26] AFIF A, RADENAHMAD N, LIM C M, et al. Structural study and proton conductivity in BaCe0.7Zr0.25-xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)[J]. Int J Hydrog Energy, 2016, 41(27): 11823-11831.
[27] [27] KANNAN R, GILL S, MAFFEI N, et al. BaCe0.85-xZrxSm0.15O3-δ (0.01<x<0.3) (BCZS): Effect of Zr content in BCZS on chemical stability in CO2 and H2O vapor, and proton conductivity[J]. J Electrochem Soc, 2013, 160(1): F18-F26.
[28] [28] LYAGAEVA J, ANTONOV B, DUNYUSHKINA L, et al. Acceptor doping effects on microstructure, thermal and electrical properties of proton-conducting BaCe0.5Zr0.3Ln0.2O3-δ (Ln=Yb, Gd, Sm, Nd, La or Y) ceramics for solid oxide fuel cell applications[J]. Electrochim Acta, 2016, 192: 80-88.
[29] [29] COORS W G, MANERBINO A. Characterization of composite cermet with 68% NiO and BaCe0.2Zr0.6Y0.2O3-δ[J]. J Membr Sci, 2011, 376(1-2): 50-55.
[30] [30] YANG L, WANG S Z, BLINN K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ[J]. Science, 2009, 326(5949): 126-129.
[31] [31] SONG S H, YOON S E, CHOI J, et al. A high-performance ceramic composite anode for protonic ceramic fuel cells based on lanthanum strontium vanadate[J]. Int J Hydrog Energy, 2014, 39(29): 16534-16540.
[32] [32] PENG R R, WU T Z, LIU W, et al. Cathode processes and materials for solid oxidefuelcells with proton conductors as electrolytes[J]. J Mater Chem, 2010, 20(30): 6218-6225.
[33] [33] WU T Z, PENG R R, XIA C R. Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ composite cathodes for proton-conducting solid oxide fuel cells[J]. Solid State Ion, 2008, 179(27-32): 1505-1508.
[34] [34] BI L, BOULFRAD S, TRAVERSA E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides[J]. Chem Soc Rev, 2014, 43(24): 8255-8270.
[35] [35] HE F, SONG D, PENG R R, et al. Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3-δ[J]. J Power Sources, 2010, 195(11): 3359-3364.
[36] [36] TIAN H C, LI W Y, MA L, et al. Deconvolution of water-splitting on the triple-conducting ruddlesden-popper-phase anode for protonic ceramic electrolysis cells[J]. ACS Appl Mater Interfaces, 2020, 12(44): 49574-49585.
[37] [37] WU W, DING H P, ZHANG Y Y, et al. Hydrogen production: 3D self-architectured steam electrode enabled efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600 ℃[J]. Adv Sci, 2018, 5(11): 1870070.
[38] [38] XIA Y P, JIN Z Z, WANG H Q, et al. A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance[J]. J Mater Chem A, 2019, 7(27): 16136-16148.
[39] [39] XU X, WANG H Q, FRONZI M, et al. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance[J]. J Mater Chem A, 2019, 7(36): 20624-20632.
[40] [40] LIANG M Z, SONG Y F, LIU D L, et al. Magnesium tuned triple conductivity and bifunctionality of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite towards reversible protonic ceramic electrochemical cells[J]. Appl Catal B Environ, 2022, 318: 121868.
[41] [41] WANG N, TORIUMI H, SATO Y, et al. La0.8Sr0.2Co1-xNixO3-δ as the efficient triple conductor air electrode for protonic ceramic cells[J]. ACS Appl Energy Mater, 2021, 4(1): 554-563.
[42] [42] SAQIB M, CHOI I G, BAE H, et al. Transition from perovskite to misfit-layered structure materials: A highly oxygen deficient and stable oxygen electrode catalyst[J]. Energy Environ Sci, 2021, 14(4): 2472-2484.
[43] [43] LIU Z Q, TANG Z J, SONG Y F, et al. High-entropy perovskite oxide: A new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells[J]. Nano Micro Lett, 2022, 14(1): 1-16.
[44] [44] ZHOU Y C, LIU E Z, CHEN Y, et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells[J]. ACS Energy Lett, 2021: 1511-1520.
[45] [45] ZHOU Y C, ZHANG W L, KANE N, et al. An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2021, 31(40): 2105386.
[46] [46] ZHU F, HE F, LIU D L, et al. A surface reconfiguration of a perovskite air electrode enables an active and durable reversible protonic ceramic electrochemical cell[J]. Energy Storage Mater, 2022, 53: 754-762.
[47] [47] HE F, LIU S A, WU T, et al. Catalytic self-assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2022, 32(48): 2206756.
[48] [48] SONG Y F, LIU J P, WANG Y H, et al. Nanocomposites: A new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells[J]. Adv Energy Mater, 2021, 11(36): 2101899.
[49] [49] XU K, ZHANG H, XU Y S, et al. An efficient steam‐induced heterostructured air electrode for protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2022, 32(23): 2110998.
[50] [50] PEI K, ZHOU Y C, XU K, et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells[J]. Nat Commun, 2022, 13(1): 2207.
[51] [51] LIU Z Q, CHENG D F, ZHU Y L, et al. Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells[J]. Chem Eng J, 2022, 450: 137787.
[52] [52] DING H P, WU W, JIANG C, et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production[J]. Nat Commun, 2020, 11(1): 1907.
[53] [53] BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485.
[54] [54] LI G D, GOU Y J, REN R Z, et al. Fluorinated Pr2NiO4+δ as high-performance air electrode for tubular reversible protonic ceramic cells[J]. J Power Sources, 2021, 508: 230343.
[55] [55] LIU Z Q, CHEN Y, YANG G M, et al. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells[J]. Appl Catal B Environ, 2022, 319: 121929.
[56] [56] TANG W, DING H P, BIAN W J, et al. Understanding of A-site deficiency in layered perovskites: Promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells[J]. J Mater Chem A, 2020, 8(29): 14600-14608.
[57] [57] XUE G Y, LI J, WANG H Q, et al. (Pr0.9La0.1)1.9(Ni0.7Cu0.3)0.9Mn0.1O4+δ nanofiber cathode with Pr site cation defect prepared by electrospinning and its application in reversible fuel cells[J]. J Power Sources, 2022, 552: 232220.
[58] [58] TARUTIN A, LYAGAEVA J, FARLENKOV A, et al. A reversible protonic ceramic cell with symmetrically designed PrNiO4+δ-based electrodes: Fabrication and electrochemical features[J]. Materials, 2018, 12(1): 118.
[59] [59] GAO Z P, DING X F, DING D, et al. Infiltrated Pr2NiO4 as promising bi-electrode for symmetrical solid oxide fuel cells[J]. Int J Hydrog Energy, 2018, 43(18): 8953-8961.
[60] [60] NICOLLET C, FLURA A, VIBHU V, et al. An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone[J]. Int J Hydrog Energy, 2016, 41(34): 15538-15544.
[61] [61] LIU Z J, ZHOU M Y, CHEN M L, et al. A high-performance intermediate-to-low temperature protonic ceramic fuel cell with in situ exsolved nickel nanoparticles in the anode[J]. Ceram Int, 2020, 46(12): 19952-19959.
[62] [62] ZHANG H, ZHOU Y C, PEI K, et al. An efficient and durable anode for ammonia protonic ceramic fuel cells[J]. Energy Environ Sci, 2022, 15(1): 287-295.
[63] [63] WANG B, BI L, ZHAO X S. Fabrication of one-step co-fired proton-conducting solid oxide fuel cells with the assistance of microwave sintering[J]. J Eur Ceram Soc, 2018, 38(16): 5620-5624
Get Citation
Copy Citation Text
WANG Zhou, ZHOU Xiaoliang, LIU Limin, CHEN Hanyu, QIAN Xinyuan, HE Feifan, SHENG Yang, JIANG Xingzhou. Research Progress on Reversible Protonic Ceramic Electrochemical Cell[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2689
Category:
Received: Feb. 11, 2023
Accepted: --
Published Online: Nov. 26, 2023
The Author Email:
CSTR:32186.14.