Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 1049(2023)

Efficient Degradation of Ciprofloxacin by S-Scheme BiOBr/WO3 Heterojunction under Simulated Visible Light

CHAI Xu1...2, GAO Shengwang2, ZHANG Yuxuan2, WANG Guoying3 and GAO Jianfeng1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(43)

    [1] [1] MWAFY E A, MOSTAFA A M, AWWAD N S, et al. Catalytic activity of multi-walled carbon nanotubes decorated with tungsten trioxides nanoparticles against 4-nitrophenol[J]. J Phys Chem Solids, 2021, 158: 110252.

    [4] [4] PIRIYANON J, TAKHAI P, PATTA S. Performance of sunlight responsive WO3/AgBr heterojunction photocatalyst toward degradation of Rhodamine B dye and ofloxacin antibiotic[J]. Opt Mater, 2021, 121: 111573.

    [5] [5] MA R, ZHANG S, WEN T. A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants[J]. Catal Today, 2019, 335: 20-30.

    [6] [6] LIAO G, YAO W. Facile synthesis of porous isotype heterojunction g-C3N4 for enhanced photocatalytic degradation of RhB under visible light[J]. Diam Relat Mater, 2022, 128: 109227.

    [7] [7] PARK J Y, CHOI K I, LEE J H, et al. Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions[J]. Mater Lett, 2013, 97: 64-66.

    [8] [8] XU F Y, ZHANG L Y, CHENG B, et al. Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity[J]. ACS Sustain Chem Eng, 2018, 6: 12291-12298.

    [9] [9] SUN Y J, LIAO J Z, DONG F, et al. A Bi/BiOI/(BiO)2CO3 heterostructure for enhanced photocatalytic NO removal under visible light[J]. Chin J Catal, 2019, 40: 362-370.

    [10] [10] YU W L, ZHANG S, CHEN J X, et al. Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution[J]. J Mater Chem A, 2018, 6: 15668-15674.

    [11] [11] LOW J X, DAI B Z, TONG T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J]. Adv Mater, 2019, 31: 1802981.

    [12] [12] CHEN C, ZHOU J L, GENG J F, et al. Perovskite LaNiO3/TiO2 step-scheme heterojunction with enhanced photocatalytic activity[J]. Appl Surf Sci, 2020, 503: 144287.

    [13] [13] MEI F F, DAI K, ZHANG J F, et al. Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity[J]. Appl Surf Sci, 2019, 488: 151-160.

    [14] [14] WANG J, ZHANG Q, DENG F, et al. Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions[J]. Chem Eng J, 2020, 379: 122264.

    [15] [15] WANG L P, CHENG B, ZHANG L Y, et al. In-situ irradiated XPS investigation on S-xcheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small, 2021, 17: 2103447.

    [16] [16] WANG J, WANG G H, CHENG B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J]. Chin J Catal, 2021, 42: 56-68.

    [17] [17] JIA X M, HAN Q F, ZHENG M Y, et al. One pot milling route to fabricate step-scheme AgI/I-BiOAc photocatalyst: Energy band structure optimized by the formation of solid solution[J]. Appl Surf Sci, 2019, 489: 409-419.

    [18] [18] GE H N, XU F Y, CHENG B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst[J]. ChemCatChem, 2019, 11: 6301-6309.

    [19] [19] SAYAMA K, HAYASHI H, ARAI T, et al. Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds[J]. Appl Catal B Environ, 2010, 94 (1): 150-157.

    [20] [20] GUO Y, QUAN X, LU N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes[J]. Environ Sci Technol, 2007, 41(12): 4422-4427.

    [21] [21] ASSADULLAH I, BHAT A A, MALIK J H. Electronic structure, optical, photocatalytic and charge storage performance of WO3 nanostructures[J]. J Phys Chem Solids, 2022, 165: 110649.

    [22] [22] ZHANG L H, SHEN Q H, HUANG F L, et al. Electrospinning directly synthesis of 0D/1D CuBi2O4@WO3 nanofiber photocatalyst with S-scheme heterojunction[J]. Appl Surf Sci, 2023, 608: 155064.

    [23] [23] CHEN L J, SU G W, WANG C G, et al. S-scheme heterojunction BP/WO3 with tight interface firstly prepared in magnetic stirring reactor for enhanced photocatalytic degradation of hazardous contaminants under visible light[J]. Sep Purif Technol, 2022, 292: 120986.

    [24] [24] JIAO Y X, WANG S, LIU Y P, et al. Innovation synthesis of Zn0.5Cd0.5S/WO3 S-scheme heterostructures with significantly enhanced photocatalytic activity[J]. J Phys Chem Solids, 2022, 171: 110986.

    [25] [25] LING Y L, DAI Y Z. Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light[J]. Appl Surf Sci, 2020, 509: 145201.

    [26] [26] ZHANG X L, HUANG W, XIA Z X, et al. One-pot synthesis of S-scheme WO3/BiOBr heterojunction nanoflowers enriched with oxygen vacancies for enhanced tetracycline photodegradation[J]. Sep Purif Technol, 2022, 290: 120897.

    [27] [27] LU J S, WANG Y J, LIU F, et al. Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite[J]. Appl Surf Sci, 2017, 393: 180-190.

    [28] [28] MOHAN L, AVANI A V, KATHIRVEL P, et al. Investigation on structural, morphological and electrochemical properties of Mn doped WO3 nanoparticles synthesized by co-precipitation method for supercapacitor applications[J]. J Alloys Compd, 2021, 882: 160670.

    [29] [29] KHAMPUNBUT A, KHEAWHOM S, LIMPHIRAT W, et al. Facile synthesis of Ni doped BiOBr nanosleets as efficient phoco-assisted charging supercapacitors[J].Electrochim Acta, 2023, 443: 141979.

    [30] [30] ZHANG S, WANG D. Preparation of novel BiOBr/CeO2 hetero structured photocatalysts and their enhanced photocatalytic activity[J]. Rsc Adv, 2015, 5(113): 93032-93040.

    [31] [31] LIU C, MAO S, WANG H L, et al. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction[J]. Chem Eng J, 2022, 430: 132806.

    [32] [32] WANG H, YONG D, CHEN S, et al. Oxygen-vacancy-mediated exction dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. J Am Chem Soc, 2018, 140: 1760-1766.

    [33] [33] HU T, YANG Y, DAI K, et al. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. Appl Surf Sci, 2018, 456: 473-481.

    [34] [34] KHAMPUANBUT A, SANTALELAT S, PANKIEW A, et al. Visible-light-driven WO3/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight[J]. J Colloid Interf Sci, 2019, 560: 213-224.

    [35] [35] ZHANG J J, ZHANG L Y, WANG W, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst[J]. J Phys Chem Lett, 2022, 13(36): 8462-8469.

    [36] [36] ZENG Z, DENG Z, WANG T, et al. Environmentally friendly synthesis of S-scheme hecekojunction UiO-66-NH2/Bi7O9I3 for promoted degradation of ciprofloxacin under visible light: DFT calculation, degradation mechanism and toxicity evaluation[J]. Sep Purif Technol, 2023, 311: 123264.

    [37] [37] ZHOU C, ZENG Z, ZENG G, et al. Visible-light-driven photocatalytic degradation of sulfamethazine by surface engineering of carbon nitrideproperties, degradation pathway and mechanisms[J]. J Hazard Mater, 2019, 380: 120815.

    [38] [38] ZHAO X H, XU Y, WANG X H, et al. Construction and enhanced efficiency of Z-scheme-based ZnCdS/Bi2WO6 composites for visible-light-driven photocatalytic dye degradation[J]. J Phys Chem Solids, 2021, 154: 110075.

    [39] [39] SWAIN G, SULTANA S, PARIDA K. Constructing a novel surfactant-free MoS2 nanosheet modified MgIn2S4 marigold micro flower: An efficient visible-light driven 2D p-n heterojunction photocatalyst toward HER and pH regulated NRR[J]. ACS Sustain Chem Eng, 2020, 8: 4848-4862.

    [40] [40] WANG Y, LANG X J, LIU X H, et al. Construction of visible-light driven AgVO3/BiOBr p-n heterojunction for improving visible-light photocatalytic performance[J]. Mater Lett, 2022, 325: 132849.

    [41] [41] XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.

    [42] [42] ZHANG J, YU J, ZHANG Y, et al. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer[J]. Nano Lett, 2011, 11: 4774-4779.

    [43] [43] FENG M, WANG Z, DIONYSIOU D D, et al. Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment[J]. J Hazard Mater, 2018, 344: 1136-1154.

    [44] [44] SHEN C H, WEN X J, FEI Z H, et al. Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 p-n heterojunction photocatalysts[J]. Chem Eng J, 2020, 391(1): 123612.

    Tools

    Get Citation

    Copy Citation Text

    CHAI Xu, GAO Shengwang, ZHANG Yuxuan, WANG Guoying, GAO Jianfeng. Efficient Degradation of Ciprofloxacin by S-Scheme BiOBr/WO3 Heterojunction under Simulated Visible Light[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1049

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 9, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics