Chinese Optics Letters, Volume. 20, Issue 1, 013701(2022)

Ultrafast all-optical switching of dual-band plasmon-induced transparency in terahertz metamaterials

Hao Sun1, Jianghua Zhang2, Yuhua Tang1, Hengzhu Liu1, Jie Yang2, and Xin Zheng2、*
Author Affiliations
  • 1College of Computer, National University of Defense Technology, Changsha 410073, China
  • 2National Innovation Institute of Defense Technology, Beijing 100010, China
  • show less
    References(46)

    [1] T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, S. Zhang. Electrically tunable slow light using graphene metamaterials. ACS Photon., 5, 1800(2018).

    [2] H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, H. Lee. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater., 7, 1801205(2019).

    [3] K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, G. Kumar. Plasmon-induced transparency in graphene-based terahertz metamaterials. EPL, 120, 27005(2017).

    [4] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [5] A. Ahmadivand, B. Gerislioglu, Z. Ramezani. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale, 11, 8091(2019).

    [6] M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, R. Singh. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater., 29, 1605881(2017).

    [7] P. Pitchappa, A. Kumar, S. Prakash, H. Jani, T. Venkatesan, R. Singh. Chalcogenide phase change material for active terahertz photonics. Adv. Mater., 31, 1808157(2019).

    [8] H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon., 2, 295(2008).

    [9] N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis. Optically implemented broadband blueshift switch in the terahertz regime. Phys. Rev. Lett., 106, 037403(2011).

    [10] Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, J.-B. Xu. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun., 9, 4909(2018).

    [11] M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, D. N. Basov. Voltage switching of a VO2 memory metasurface using ionic gel. Appl. Phys. Lett., 105, 041117(2014).

    [12] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, H. Lee. Electrically controllable molecularization of terahertz meta-atoms. Adv. Mater., 30, 1802760(2018).

    [13] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy, 68, 104280(2020).

    [14] J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices. Photon. Res., 7, 994(2019).

    [15] J. Ji, S. Zhou, W. Wang, F. Ling, J. Yao. Active control of terahertz plasmon-induced transparency in the hybrid metamaterial/monolayer MoS2/Si structure. Nanoscale, 11, 9429(2019).

    [16] P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, C. Lee. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv. Opt. Mater., 4, 541(2016).

    [17] C. Liu, P. Liu, C. Yang, Y. Lin, H. Liu. Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial. Carbon, 142, 354(2019).

    [18] S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, R. Degl’Innocenti. Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning. Adv. Opt. Mater., 6, 1800570(2018).

    [19] Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. M. Chia, H. Yang. Graphene terahertz modulators by ionic liquid gating. Adv. Mater., 27, 1874(2015).

    [20] W. Y. Kim, H.-D. Kim, T.-T. Kim, H.-S. Park, K. Lee, H. J. Choi, S. H. Lee, J. Son, N. Park, B. Min. Graphene–ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations. Nat. Commun., 7, 10429(2016).

    [21] Z. Xu, Y.-S. Lin. A stretchable terahertz parabolic‐shaped metamaterial. Adv. Opt. Mater., 7, 1900379(2019).

    [22] J. Ji, S. Zhou, W. Wang, C. Luo, Y. Liu, F. Ling, J. Yao. Active multifunctional terahertz modulator based on plasmonic metasurface. Opt. Express, 27, 2363(2019).

    [23] S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936(2012).

    [24] M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, T. E. Murphy. Tunable terahertz hybrid metal–graphene plasmons. Nano Lett., 15, 7099(2015).

    [25] S. Xiao, T. Wang, T. Liu, C. Zhou, X. Jiang, J. Zhang. Active metamaterials and metadevices: a review. J. Phys. D: Appl. Phys., 53, 503002(2020).

    [26] P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [27] Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, W. Zhang. Dual control of active graphene-silicon hybrid metamaterial devices. Carbon, 90, 146(2015).

    [28] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [29] H. Sun, Y. Hu, Y. Tang, J. You, J. Zhou, H. Liu, X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Photon. Res., 8, 263(2020).

    [30] H. Sun, J. Yang, H. Liu, D. Wu, X. Zheng. Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials. Chin. Opt. Lett., 19, 013602(2021).

    [31] H. Sun, Y. Tang, Y. Hu, J. You, H. Liu, X. Zheng. Active formatting modulation of electromagnetically induced transparency in metamaterials. Chin. Opt. Lett., 18, 092402(2020).

    [32] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz frequency and phase tuning by all‐optical molecularization of metasurfaces. Adv. Opt. Mater., 7, 1901050(2019).

    [33] J. Zhou, C. Zhang, Q. Liu, J. You, X. Zheng, X. Cheng, T. Jiang. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect. Nanophotonics, 9, 2797(2020).

    [34] Y. Hu, T. Jiang, H. Sun, M. Tong, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast frequency shift of electromagnetically induced transparency in terahertz metaphotonic devices. Laser Photon. Rev., 14, 1900338(2020).

    [35] Y. Hu, J. You, M. Tong, X. Zheng, Z. Xu, X. Cheng, T. Jiang. Pump‐color selective control of ultrafast all‐optical switching dynamics in metaphotonic devices. Adv. Sci., 7, 2000799(2020).

    [36] R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, G. Kumar. Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial. Sci. Rep., 9, 18068(2019).

    [37] J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, H. Zhang. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows. Sci. Rep., 4, 6128(2014).

    [38] Y. Wang, M. Tao, Z. Pei, X. Yu, B. Wang, J. Jiang, X. He. Tunable bandwidth of double electromagnetic induced transparency windows in terahertz graphene metamaterial. RSC Adv., 8, 37057(2018).

    [39] K. Zhang, C. Wang, L. Qin, R.-W. Peng, D.-H. Xu, X. Xiong, M. Wang. Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial. Opt. Lett., 39, 3539(2014).

    [40] F. Bagci, B. Akaoglu. Single and multi-band electromagnetically induced transparency-like effects with a four-fold symmetric metamaterial design. Mater. Res. Express, 6, 055806(2019).

    [41] K. M. Devi, D. R. Chowdhury, G. Kumar, A. K. Sarma. Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial. J. Appl. Phys., 124, 063106(2018).

    [42] C. Sun, J. Si, Z. Dong, X. Deng. Tunable multispectral plasmon induced transparency based on graphene metamaterials. Opt. Express, 24, 11466(2016).

    [43] S. Hu, H. Yang, S. Han, X. Huang, B. Xiao. Tailoring dual-band electromagnetically induced transparency in planar metamaterials. J. Appl. Phys., 117, 043107(2015).

    [44] C. Tang, Q. Niu, B.-X. Wang, W.-Q. Huang. Design of dual-band plasmon-induced transparent effect based on composite structure of closed-ring and square patch. Plasmonics, 14, 533(2019).

    [45] Z. Dong, C. Sun, J. Si, X. Deng. Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface. Opt. Express, 25, 12251(2017).

    [46] J. Kim, R. Soref, W. R. Buchwald. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial. Opt. Express, 18, 17997(2010).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Hao Sun, Jianghua Zhang, Yuhua Tang, Hengzhu Liu, Jie Yang, Xin Zheng. Ultrafast all-optical switching of dual-band plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2022, 20(1): 013701

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared and Terahertz Photonics

    Received: May. 18, 2021

    Accepted: Aug. 2, 2021

    Published Online: Oct. 8, 2021

    The Author Email: Xin Zheng (zhengxin@nudt.edu.cn)

    DOI:10.3788/COL202220.013701

    Topics