Infrared Technology, Volume. 45, Issue 10, 1008(2023)

Research Status of Infrared Thermography in NDT of FRP Composites/Thermal Barrier Coatings and Its Development

Kai ZHENG1,*... Zhitao LUO2,3 and Hui ZHANG3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(104)

    [1] [1] Clarke D R, Phillpot S R. Thermal barrier coatings materials[J]. Materials Today, 2005, 8(6):22-29.

    [4] [4] ZHAO Y X, LI D C, ZHONG X H, et al. Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying[J]. Surface & Coatings Technology, 2014, 249: 48-55.

    [7] [7] Suzuki Y, Todoroki A, Matsuzaki R, et al. Impact-damage visualization in CFRP by resistive heating: development of a new detection method for indentations caused by impact loads[J]. Composites Part A, 2012, 43(1): 53-64.

    [8] [8] Goidescu C, Welemane H, Garnier C, et al. Damage investigation in CFRP composites using full-field measurement techniques: combination of digital image stereo-correlation, infrared thermography and X-ray tomography[J]. Composites Part B, 2013, 48: 95-105.

    [9] [9] HE Y Z, TIAN G Y, PAN M C, et al. Impact evaluation in carbon fiber reinforced plastic(CFRP) laminates using eddy current pulsed thermography[J]. Composite Structures, 2014, 109(1): 1-7.

    [10] [10] QU Z, JIANG P, ZHANG W X. Development and application of infrared thermography non-destructive testing techniques[J]. Sensors, 2020, 20: 3851.

    [11] [11] Sophian A, TIAN G Y, Taylor D, et al. A feature extraction technique based on principal component analysis for pulsed eddy current NDT[J]. NDT & E International, 2003, 36(1): 37-41.

    [14] [14] Maldague X, Marinetti S. Pulse phase infrared thermography[J]. Journal of Applied Physics, 1996, 79(5): 2694-2698.

    [15] [15] Ludwig N, Teruzzi P. Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography[J]. Infrared Physics & Technology, 2002, 43(3-5): 297-301.

    [16] [16] Maldague X, Ziadi A, Klein M. Double pulse infrared thermography[J]. NDT & E International, 2004, 37: 559-564.

    [17] [17] Meola C, Carlomagno G M. Impact damage in GFRP: new insights with infrared thermography[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(12): 1839-1847.

    [18] [18] Almond D P, Pickering S G. An analytical study of the pulsed thermography defect detection limit[J]. Journal of Applied Physics, 2012, 111: 093510.

    [19] [19] Azizinasab B, Hasanzadeh R P R, Hedayatrasa S, et al. Defect detection and depth estimation in CFRP through phase of transient response of flash thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2364-2373.

    [20] [20] Rajic N. Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures[J]. Composite Structures, 2002, 58(4): 521-528.

    [21] [21] Marinetti S, Finesso L, Marsilio E. Matrix factorization methods: application to thermal NDT/E[J]. NDT & E International, 2006, 39(8): 611-616.

    [22] [22] Alvarez-Restrepo C A, Benitez-Restrepo H D, Tobón L E. Characterization of defects of pulsed thermography inspections by orthogonal polynomial decomposition[J]. NDT & E International, 2017, 91: 9-21.

    [23] [23] Yousefi B, Sfarra S, Sarasini F, et al. Low-rank sparse principal component thermography (sparse-PCT): comparative assessment on detection of subsurface defects[J]. Infrared Physics & Technology, 2019, 98: 278-284.

    [26] [26] WU J Y, Sfarra S, Yao Y. Sparse principal component thermography for subsurface defect detection in composite products[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5594-5600.

    [27] [27] WEN C M, Sfarra S, Gargiulo G, et al. Thermographic data analysis for defect detection by imposing spatial connectivity and sparsity constraints in principal component thermography[J]. IEEE Transactions on Industrial Informatics, 2018, 17(6): 3901-3909.

    [28] [28] LIU L, GAO B, WU S C, et al. Structured iterative alternating sparse matrix decomposition for thermal imaging diagnostic system[J]. Infrared Physics & Technology, 2020, 107: 103288.

    [29] [29] Ahmed J, GAO B, Woo W, et al. Ensemble joint sparse low rank matrix decomposition for thermography diagnosis system[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2648-2658.

    [30] [30] ZHANG X F, HE Y Z, Chady T, et al. CFRP impact damage inspection based on manifold learning using ultrasonic induced thermography[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2648-2659.

    [31] [31] SHEN P, LUO Z T, WANG S, et al. Feature detection of GFRP subsurface defects using fast randomized sparse principal component thermography[J]. International Journal of Thermophysics, 2022, 43: 160.

    [32] [32] Bates D, Smith G, LU D, et al. Rapid thermal non-destructive testing of aircraft components[J]. Composites Part B, 2000, 31(3): 175-185.

    [33] [33] Meola C, Carlomagno G M, Squillace A, et al. Non-destructive evaluation of aerospace materials with lock-in thermography[J]. Engineering Failure Analysis, 2006, 13(3): 380-388.

    [34] [34] Pickering S, Almond D. Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques[J]. NDT & E International, 2008, 41(7): 501-509.

    [35] [35] Montanini R, Freni F. Non-destructive evaluation of thick glass fiberreinforced composites by means of optically excited lock-in thermography[J]. Composites Part A, 2012, 43(11): 2075-2082.

    [36] [36] Lahiri B B, Bagavathiappan S, Reshmi P R, et al. Quantification of defects in composites and rubber materials using active thermography[J]. Infrared Physics & Technology, 2012(55): 191-199.

    [37] [37] Oliveira B C F D, Nienheysen P, Baldo C R, et al. Improved impact damage characterization in CFRP samples using the fusion of optical lockin thermography and optical square-pulse shearography images[J]. NDT & E international, 2020, 111: 102215.

    [41] [41] GONG J L, LIU J Y, WANG F, et al. Inverse heat transfer approach for nondestructive estimation the size and depth of subsurface defects of CFRP composite using lock-in thermography[J]. Infrared Physics & Technology, 2015, 71: 439-447.

    [42] [42] LIU J Y, WANG F, LIU Y, et al. Inverse methodology for identification the thermal diffusivity and subsurface defect of CFRP composite by lockin thermographic phase (LITP) profile reconstruction[J]. Composite Structures, 2016, 138: 214-226.

    [43] [43] CAO Y P, DONG Y F, CAO Y L, et al. Two-stream convolutional neural network for non-destructive subsurface defect detection via similarity comparison of lock-in thermography signals[J]. NDT & E International, 2020, 112: 102246.

    [44] [44] DONG Y F, XIA C J, YANG J X, et al. Spatio-temporal 3-D residual networks for simultaneous detection and depth estimation of CFRP subsurface defects in lock-in thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2571-2581.

    [45] [45] DONG Y F, ZHAO B W, YANG J X, et al. Two-stage convolutional neural network for joint removal of sensor noise and background interference in lock-in thermography[J]. NDT & E International, 2023, 137: 102816.

    [46] [46] LUO Z T, LUO H, WANG S, et al. Enhanced CFRP defect detection from highly undersampled thermographic data via low-rank tensor completionbased thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8641-8653.

    [47] [47] Tabatabaei N, Mandelis A. Thermal-wave radar: a novel subsurface imaging modality with extended depth-resolution dynamic range[J]. Review of Scientific Instruments, 2009, 80(3): 034902.

    [48] [48] Tabatabaei N, Mandelis A, Amaechi B T. Thermophotonic radar imaging: An emissivity-normalized modality with advantages over phase lock-in thermography[J]. Applied Physics Letters, 2011, 98(16): 163706.

    [49] [49] Mulaveesala R, Tuli S. Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection[J]. Applied Physics Letters, 2006, 89: 191913.

    [50] [50] Mulaveesala R, Vaddi J S, Singh P. Pulse compression approach to infrared nondestructive characterization[J]. Review of Scientific Instruments, 2008, 79(9): 094901.

    [51] [51] Tabatabaei N, Mandelis A. Thermal coherence tomography using match filter binary phase coded diffusion waves[J]. Physics Review Letters, 2011, 107: 165901.

    [52] [52] Kaiplavil S, Mandelis A. Truncated-correlation photothermal coherence tomography for deep subsurface analysis[J]. Nature Photonics, 2014, 8(8): 635-642.

    [53] [53] Chatterjee K, Tuli S, Pickering S G, et al. A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques[J]. NDT & E International, 2011, 44(7): 655-667.

    [54] [54] Giorleo G, Meola C. Comparison between pulsed and modulated thermography in glass–epoxy laminates[J]. NDT & E International, 2002, 35(5): 287-292.

    [55] [55] Dua G, Arora V, Mulaveesala R. Defect detection capabilities of pulse compression based infrared non-destructive testing and evaluation[J]. IEEE Sensors Journal, 2020, 21(6): 7940-7947.

    [56] [56] Rani A, Mulaveesala R. Novel pulse compression favorable excitation schemes for infrared non-destructive testing and evaluation of glass fibre reinforced polymer materials[J]. Composite Structures, 2022, 286: 115338.

    [57] [57] Hedayatrasa S, Poelman G, Segers J, et al. Performance of frequency and/or phase modulated excitation waveforms for optical infrared thermography of CFRPs through thermal wave radar: a simulation study[J]. Composite Structures, 2019, 225: 111177.

    [58] [58] Hedayatrasa S, Poelman G, Segers J, et al. Novel discrete frequencyphase modulated excitation waveform for enhanced depth resolvability of thermal wave radar[J]. Mechanical Systems and Signal Processing, 2019, 132: 512-522.

    [59] [59] Hedayatrasa S, Poelman G, Segers J, et al. On the application of an optimized frequency-phase modulated waveform for enhanced infrared thermal wave radar imaging of composites[J]. Optics and Lasers in Engineering, 2021, 138: 106411.

    [60] [60] GONG J L, LIU J Y, QIN L, et al. Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermalwave radar imaging (TWRI) based on the multi-transform technique[J]. NDT & E International, 2014, 62: 130-136.

    [61] [61] WANG F, LIU J Y, LIU Y, et al. Research on the fiber lay-up orientation detection of unidirectional CFRP laminates composite using thermalwave radar imaging[J]. NDT & E International, 2016, 84: 54-66.

    [62] [62] WANG F, WANG Y H, LIU J Y, et al. Optical excitation fractional Fourier transform (FrFT) based enhanced thermal-wave radar imaging (TWRI)[J]. Optics Express, 2018, 26(17): 21403.

    [63] [63] YANG R Z, HE Y Z, Mandelis A, et al. Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5637-5647.

    [64] [64] WU S C, GAO B, YANG Y, et al. Halogen optical referred pulsecompression thermography for defect detection of CFRP[J]. Infrared Physics & Technology, 2019, 102: 103006.

    [65] [65] LUO Z T, SHEN P, LUO H, et al. Advanced orthogonal frequency and phase modulated waveform for contrast-enhanced photothermal wave radar thermography[J]. Journal of Applied Physics, 2022, 131(22): 224903.

    [66] [66] GUO W, DONG L H, WANG H D, et al. Discriminate the substrate crack under sprayed coatings using ultrasonic infrared thermography[J]. Infrared Physics & Technology, 2019, 102(9): 103073.

    [67] [67] GUO W, HUANG J K, ZHU J G, et al. Experimental investigation on detection of coating debonds in thermal barrier coatings using vibrothermography with a piezoceramic actuator[J]. NDT & E International, 2023, 137(7): 102859.

    [68] [68] ZHU W Y, LIU Z W, JIAO D C, et al. Eddy current thermography with adaptive carrier algorithm for non-destructive testing of debonding defects in thermal barrier coatings[J]. Journal of Nondestructive Evaluation, 2018, 37: 31.

    [69] [69] Cielo P, Dallaire S. Optothermal NDE of thermal-barrier coatings[J]. Journal of Materials Engineering, 1987, 9: 71-79.

    [70] [70] LIU H N, Sakamoto M, Kishi K, et al. Detection of defects in thermal barrier coatings by thermography analysis[J]. Materials Transactions, 2003, 44(9): 1845-1850.

    [71] [71] Shepard S M, Ahmed T, Rubadeux B A, et al. Synthetic processing of pulsed thermographic data for inspection of turbine components[J]. Insight-non-Destructive Testing and Condition Monitoring, 2001, 43(9): 587-589.

    [72] [72] Shepard S M, Lhota J R, Rubadeux B A, et al. Reconstruction and enhancement of active thermographic image sequences[J]. Optical Engineering, 2003, 42(5): 1337-1342.

    [73] [73] Shepard S M, HOU Y L, Lhota J R, et al. Thermographic measurement of thermal barrier coating thickness[C]//Proceedings of SPIE, 2005, 5782: 407-410.

    [74] [74] Marinetti S, Vavilov V, Bison P, et al. Quantitative infrared thermographic nondestructive testing of thermal barrier coatings[J]. Materials Evaluation, 2003, 61(6): 773-780.

    [75] [75] Marinetti S, Robba D, Cernuschi F, et al. Thermographic inspection of TBC coated gas turbine blades: discrimination between coating over-thicknesses and adhesion defects[J]. Infrared Physics & Technology, 2007, 49(3): 281-285.

    [76] [76] Cernuschi F, Marinetti S. Discrimination between over-thickness and delamination of thermal barrier coatings by apparent thermal effusivity thermographic technique[J]. Journal of Thermal Spray Technology, 2010, 19(5): 958-963.

    [77] [77] Bison P, Cernuschi F, Grinzato E. In-depth and in-plane thermal diffusivity measurements of thermal barrier coatings by IR camera: evaluation of ageing[J]. International Journal of Thermophysics, 2008, 29(6): 2149-2161.

    [78] [78] Cernuschi F, Bison P, Figari A, et al. Thermal diffusivity measurements by photothermal and thermographic techniques[J]. International Journal of Thermophysics, 2004, 25(2): 439-457.

    [79] [79] Cernuschi F, Bison P, Marinetti S, et al. Thermal diffusivity measurement by thermographic technique for the non-destructive integrity assessment of TBCs coupons[J]. Surface and Coatings Technology, 2010, 205(2): 498-505.

    [80] [80] Bison P, Cernuschi F, Capelli S. A thermographic technique for the simultaneous estimation of in-plane and in-depth thermal diffusivities of TBCs[J]. Surface and Coatings Technology, 2011, 205(10): 3128-3133.

    [81] [81] Cernuschi F. Can TBC porosity be estimated by non-destructive infrared techniques? a theoretical and experimental analysis[J]. Surface and Coatings Technology, 2015, 272: 387-394.

    [82] [82] Franke B, Sohn Y H, CHEN X, et al. Monitoring damage evolution in thermal barrier coatings with thermal wave imaging[J]. Surface and Coatings Technology, 2005, 200(5-6): 1292-1297.

    [83] [83] Choi C, Choi S H, Kim J. Study for blade ceramic coating delamination detection for gas turbine[J]. International Journal of Modern Physics B, 2008, 22(31n32): 5699-5704.

    [84] [84] Schweda M, Beck T, Offermann M, et al. Thermographic analysis and modelling of the delamination crack growth in a thermal barrier coating on Fecralloy substrate[J]. Surface and Coatings Technology, 2013, 217: 124-128.

    [85] [85] Schweda M, Beck T, Malzbender J, et al. Damage evolution of a thermal barrier coating system with 3-dimensional periodic interface roughness: effects of roughness depth, substrate creep strength and pre-oxidation[J]. Surface and Coatings Technology, 2015, 276: 368-373.

    [86] [86] Tinsley L, Chalk C, Nicholls J, et al. A study of pulsed thermography for life assessment of thin EB-PVD TBCs undergoing oxidation ageing[J]. NDT & E International, 2017, 92: 67-74.

    [87] [87] Ptaszek G, Cawley P, Almond D, et al. Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems[J]. NDT & E International, 2012, 45(1):71-78.

    [88] [88] Ptaszek G, Cawley P, Almond D, et al. Transient thermography testing of unpainted thermal barrier coating (TBC) systems[J]. NDT &E International, 2013, 59: 48-56.

    [89] [89] Ptaszek G. Investigation and development of transient thermography for detection of disbonds in thermal barrier coating systems[D]. Imperial College London, 2012.

    [90] [90] Mezghani S, Perrin E, Vrabie V, et al. Evaluation of paint coating thickness variations based on pulsed infrared thermography laser technique[J]. Infrared Physics & Technology, 2016, 76: 393-401.

    [91] [91] Unnikrishnakurup S, Dash J, Ray S, et al. Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: a comparative study[J]. NDT & E International, 2020, 116: 102367.

    [95] [95] ZHAO S B, WANG H M, WU N M, et al. Nondestructive testing of the fatigue properties of air plasma sprayed thermal barrier coatings by pulsed thermography[J]. Russian Journal of Nondestructive Testing, 2015, 51: 445-456.

    [99] [99] TANG Q J, LIU J Y, DAI J M, et al. Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology[J]. Applied Thermal Engineering, 2017, 114: 770-775.

    [100] [100] TANG Q J, DAI J M, LIU J Y, et al. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology[J]. Infrared Physics & Technology, 2016, 77: 144-148.

    [101] [101] BU C W, SUN Z H, TANG Q J, et al. Thermography sequence processing and defect edge identification of TBC structure debonding defects detection using long-pulsed infrared wave non-destructive testing technology[J]. Russian Journal of Nondestructive Testing, 2019, 55: 80-87.

    [104] [104] GUO W, DONG L H, WANG H D, et al. Size estimation of coating disbonds using the first derivative images in pulsed thermography[J]. Infrared Physics & Technology, 2020, 104: 103106.

    [105] [105] LIU Z W, JIAO D C, SHI W X,et al. Linear laser fast scanning thermography NDT for artificial debond defects in thermal barrier coatings[J]. Optics Express, 2017, 25(25): 31789.

    [106] [106] JIAO D C, LIU Z W, ZHU W Y, et al. Exact localization of debonding defects in thermal barrier coatings[J]. AIAA Journal, 2018, 56(9): 3691-3700.

    [107] [107] CHEN F, ZHANG K, JIANG H J, et al. Thickness evaluations for thin coatings using laser scanning thermography[J]. NDT & E International, 2023, 137(17): 102817.

    [108] [108] JIAO D C, SHI W X, LIU Z W, et al. Laser multi-mode scanning thermography method for fast inspection of micro-cracks in TBCs surface[J]. Journal of Nondestructive Evaluation, 2018, 37: 30.

    [109] [109] Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography-Part I: simulation[J]. Infrared Physics & Technology, 2017, 83: 124-131.

    [110] [110] Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography–Part II: experimental investigation[J]. Infrared Physics & Technology, 2018, 92: 24-29.

    [111] [111] ZHANG J Y, MENG X B, MA Y C. A new measurement method of coatings thickness based on lock-in thermography[J]. Infrared Physics & Technology, 2016, 76: 655-660.

    [112] [112] TANG Q J, DAI J M, BU C W, et al. Experimental study on debonding defects detection in thermal barrier coating structure using infrared lock-in thermographic technique[J]. Applied Thermal Engineering, 2016, 107: 463-468.

    [113] [113] SONG P, XIAO P, LIU J Y, et al. The inspection of coating thickness uniformity of SiC-coated carbon-carbon (C/C) composites by laser-induced thermal-wave imaging [J]. Carbon, 2019, 147: 348-356.

    [114] [114] SHI L C, LONG Y, WANG Y Z, et al. Online nondestructive evaluation of TBC crack using infrared thermography[J]. Measurement Science and Technology, 2021, 32(11): 115008.

    [115] [115] WANG F, LIU J Y, Mohummad O, et al. Research on debonding defects in thermal barrier coatings structure by thermal-wave radar imaging (TWRI)[J]. International Journal of Thermophysics, 2018, 39: 71.

    [116] [116] LUO Z T, LUO H, WANG S, et al. The photothermal wave field and high-resolution photothermal pulse compression thermography for ceramic/metal composite solids[J]. Composite Structures, 2022, 282(4): 115069.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Kai, LUO Zhitao, ZHANG Hui. Research Status of Infrared Thermography in NDT of FRP Composites/Thermal Barrier Coatings and Its Development[J]. Infrared Technology, 2023, 45(10): 1008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 31, 2023

    Accepted: --

    Published Online: Nov. 20, 2023

    The Author Email: Kai ZHENG (kai.zheng@163.com)

    DOI:

    CSTR:32186.14.

    Topics