Optics and Precision Engineering, Volume. 24, Issue 11, 2613(2016)

Applications and development of ultra large aperture space optical remote sensors

ZHANG Xue-jun*... FAN Yan-chao, BAO He and XUE Dong-lin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(50)

    [1] [1] LILLIE C F. Large deployable telescopes for future space observatories [J]. SPIE, 2005, 5899: 1-12.

    [2] [2] KENDRICK S E, STAHL H P. Large aperture space telescope mirror fabrication trades [J].SPIE, 2008, 7010: 70102G.

    [3] [3] STAHL H P, THRONSON H, LANGHOFF S, et al.. Potential astrophysics science missions enabled by NASAs planned Ares V [J]. SPIE, 2009, 7436: 743607.

    [4] [4] MA ZH B, HE L SH. Development trend review of foreign heavy-lift launch vehicle [J]. Journal of Solid Rocket Technology, 2012, 35(1): 1-4. (in Chinese)

    [5] [5] HUANG Y. Measuring the Surface Shape of Membrane Mirror Based on Shack-Hartmann Wavefront Sensor [D]. Suzhou: Soochow University, 2014. (in Chinese)

    [6] [6] MEINEL A B. Aperture synthesis using independent telescopes [J]. Appl. Opt., 1970, 9(11): 2501-2504.

    [7] [7] FAUCHERRE M, DELABRE B, DIERICKX P, et al.. Michelson versus fizeau type beam combination: is there a difference [J]. SPIE, 1990, 1237: 206-217.

    [8] [8] MEINEL A B, MEINEL M P. Large sparse-aperture space optical systems [J].Opt. Eng., 2002, 41(8): 1983-1994.

    [9] [9] FIENUP J R, GRIFFITH D K, HARRINGTON L, et al.. Comparision of reconstruction algorithms for images from sparse-aperture systems [J]. SPIE, 2002, 4792: 1-8.

    [10] [10] ANDERSEN G.Photon sieve telescope [J]. SPIE, 2005, 5899: 58990T.

    [11] [11] KIPP L, SKIBOWSKIM, JOHNSON R L, et al.. Sharper images by focusing soft X-rays with photon sieves [J].Nature, 2001, 414(6860): 184-188.

    [12] [12] ALLEN L, ANGEL R, MANGUS J D, et al.. The Hubble Space Telescope Optical Systems Failture Report [R]. Pasadena: NASA, 1990.

    [13] [13] FEINBERG L D, GEITHNER P H. Applying HST lessons learned to JWST [J].SPIE, 2008, 7010: 70100N.

    [14] [14] BOUGOIN M, LAVENAC J. From HERSCHEL to GAIA, 3-meter class SiC space optics [J].SPIE, 2011, 8126: 81260V.

    [15] [15] PILBRATT G L. Herschel mission overview and key programmes [J].SPIE, 2008, 7010: 701002.

    [16] [16] TOULEMONT Y, PASSVOGEL T, PILBRAT G L, et al.. The 3, 5 m all SiC telescope for HERSCHEL [J]. SPIE, 2004, 5487: 1119-1128.

    [17] [17] ARGABRIGHT V, ARNOLD B, ARONSTEIN D, et al.. Advanced Technology Large-Aperture Space Telescope(ATLAST): A Technology Roadmap for the Next Decade [R]. Pasadena: NASA, 2009.

    [18] [18] DOOLEY J A, LAWSON P R.Technology Plan for the Terrestrial Planet Finder Coronagraph [R]. Pasadena: NASA, 2005.

    [19] [19] MEINEL A B, MEINEL M P. Inflatable membrane mirrors for optical passband imagery [J].Opt. Eng., 2000, 39(2): 541-550.

    [20] [20] SOH M, LEE H J, YOUN S K. An inflatable circular membrane mirror for space telescope [J]. SPIE, 2005, 5638: 262-271.

    [21] [21] ANDERSEN G P, KNIZE R J, PALISOCA L, et al.. Large-aperture holographically corrected membrane telescope [J].Optical Engineering, 2002, 41(7): 1603-1607.

    [22] [22] CHODIMELLA S, MOORE J D, PATRICK B G, et al.. Design, fabrication, and validation of an ultra-lightweight membrane mirror [J]. SPIE, 2005, 5894: 589416.

    [23] [23] MOORE J D, PATRICK B G, CHODIMELLA S, et al.. Design and testing of a one-meter membrane mirror with active boundary control [J]. SPIE, 2005, 5899: 58990Z.

    [24] [24] ROBINSON L, WICKERSHAM M A, KORDE U A. Membrane mirrors with boundary located electrostatic actuators for excitation of multiple modes [C]. Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, US: AIAA, 2009: 171-180.

    [25] [25] ROBINSON L K, WICKERSHAM M A, KORDE U A, et al.. Experiments on a twelve mode membrane mirror with boundary located electrostatic actuators [C]. Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando: AIAA, 2010: 7580-7589.

    [26] [26] DIMAKOV S A, BOGDANOV M P, GORLANOV A V, et al.. Electrically controlled pre-shaped membrane mirror for systems with wavefront correction [J]. SPIE, 2003, 5162: 147-156.

    [27] [27] GREENHOUSE M A. The JWST science instrument payload: mission context and status [J].SPIE, 2014, 9143: 914307.

    [28] [28] ATKINSON C, TEXTER S, KESKI-KUHA R, et al.. Status of the JWST optical telescope element [J]. SPIE, 2012, 8442: 84422E.

    [29] [29] ATKINSON C, TEXTER S, KESKI-KUHA R, et al.. Status of the JWST optical telescope element [J]. SPIE, 2016, 9904: 990403.

    [30] [30] GLASSMAN T, LEVI J, LIEPMANN T, et al.. Alignment of the James Webb space telescope optical telescope element [J]. SPIE, 2016, 9904: 99043Z.

    [31] [31] REY J J, WIRTH A, JANKEVICS A, et al.. A deployable, annular, 30m telescope, space-based observatory [J]. SPIE, 2014, 9143: 914318.

    [32] [32] FRIDLUND C V M. Darwin-the infrared space interferometry mission [J]. ESA-bulletin, 2000, 103(3): 20-25.

    [33] [33] ESA.Darwin, Science Across Disciplines: A Proposal for the Cosmic Vision 2015-2025 [EB/OL].http: //www.mpia.de/Darwin/CV2007. [2007-01-25].

    [34] [34] WALLNER O, ERGENZINGER K, FLATSCHER R, et al.. DARWIN mission and configuration trade-off [J]. SPIE, 2006, 6268: 626827.

    [35] [35] ESA.Darwin: Study Ended, No Further Activities Planned [EB/OL]. http: //www.esa.int/Our_Activities/Space_Science/Darwin_overview.[2009-10-23].

    [36] [36] LAY O P, GUNTER S M, HAMLIN L A, et al.. Architecture trade study for the terrestrial planet finder interferometer [J]. SPIE, 2005, 5905: 590502.

    [37] [37] LAY O P, DUBOVITSKY S. Nulling interferometers: the importance of systematic errors and the X-array configuration [J].SPIE, 2004, 5491: 874-885.

    [38] [38] LAY O P, MARTIN S R, HUNYADI S L. Planet-finding performance of the TPF-I Emma architecture [J].SPIE, 2007, 6693: 66930A.

    [39] [39] MULLEN L. Rage against the dying of the light[N/OL].http: //www.astrobio.net/news-exclusive/rage-against-the-dying-of-the-light.Astrobiology Magazine.[2011-06-02].

    [40] [40] ZARIFIS V, Jr BELL R M, BENSON L R, et al.. The multi aperture imaging array [C]. Proceeding of Working on the Fringe: An International Conference on Optical and IR Interferometry from Ground and Space, San Francisco: ASP, 1999: 278-285.

    [41] [41] KENDRICK R L, AUBRUN J N, BELL R, et al.. Wide-field Fizeau imaging telescope: experimental results [J]. Applied Optics, 2006, 45(18): 4235-4240.

    [42] [42] CHUNG S J, MILLER D W, DE WECK O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays [J]. Opt. Eng., 2004, 43(9): 2156-2167.

    [43] [43] HYDE R A, DIXIT S N, WEISBERG A H, et al.. Eyeglass : a very large aperture diffractive space telescope [J]. SPIE, 2002, 4849: 28-39.

    [44] [44] DAPPA.Membrane Optical Imager for Real-time Exploitation [EB/OL]. http: //www.darpa.mil/Our_Work/TTO/Programs/Membrane_Optical_Imager_for_Real-Time_Exploitation_(MOIRE).aspx.[2011-12-04].

    [45] [45] ATCHESON P D, STEWART C, DOMBER J, et al.. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes [J]. SPIE, 2012, 8442: 844221.

    [46] [46] ATCHESON P, DOMBER J, WHITEAKER K, et al.. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope [J]. SPIE, 2014, 9143: 91431W.

    [47] [47] WALLER D, CAMPBELL L, DOMBER J, et al.. MOIRE primary diffractive optical element structure deployment testing [C]. Proceedings of the 2nd AIAA Spacecraft Structures Conference, Florida: AIAA, 2015: 536-545.

    [48] [48] DAW A.First Solar Images Using a Photon Sieve [EB/OL]. http: //science.gsfc.nasa.gov/sed/index.cfm fuseaction=localnews.main&navOrgCode=671.[2011-10-15].

    [49] [49] ANDERSEN G, ASMOLOV O, DEARBORN M E, et al.. FalconSAT-7: a membrane photon sieve Cubesat solar telescope [J].SPIE, 2012, 8442: 84421C.

    [50] [50] ANDERSEN G P, ASMOLOVA O. FalconSAT-7: a membrane space telescope [J].SPIE, 2014, 9143: 91431X.

    CLP Journals

    [1] GUO Jiang, ZHU Lei, ZHAO Ji, GONG Da-peng. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Optics and Precision Engineering, 2019, 27(5): 1138

    [2] Huang Yufei, Bai Shaojun, Gao Ji, Lv Zheng, Xu Jia. Dynamic surface response analysis of large-aperture space mirror[J]. Infrared and Laser Engineering, 2019, 48(11): 1114001

    [3] YANG Hui-sheng, ZHANG Xue-jun, LI Zhi-lai, BAO He, FAN Yan-chao. Technology and development of deployable segmented ultra-large-aperture space remote sensors[J]. Optics and Precision Engineering, 2018, 26(6): 1287

    [4] LIU Zhen-yu, LI Long-xiang, ZENG Xue-feng, LUO Xiao, ZHANG Xue-jun. Fabrication of large aspheric mirror using multi-mode polishing based on error separation[J]. Optics and Precision Engineering, 2017, 25(4): 813

    [5] DONG De-yi, PANG Xin-yuan, ZHANG Xue-jun, FAN Yan-Chao, LI Zhi-lai, YANG Li-wei, HU Hai-fei. Key technology in developing of metrology mount for large aperture monolithic space-based mirror[J]. Optics and Precision Engineering, 2019, 27(10): 2165

    [6] Lü Yang, Zeng Xuefeng, Zhang Feng. Effect of Surface Scattering on Imaging Performance for Off-Axis Three Mirror Optical System[J]. Laser & Optoelectronics Progress, 2018, 55(9): 92901

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xue-jun, FAN Yan-chao, BAO He, XUE Dong-lin. Applications and development of ultra large aperture space optical remote sensors[J]. Optics and Precision Engineering, 2016, 24(11): 2613

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 27, 2016

    Accepted: --

    Published Online: Dec. 26, 2016

    The Author Email: Xue-jun ZHANG (zxj@ciomp.ac.cn)

    DOI:10.3788/ope.20162411.2613

    Topics