Infrared and Laser Engineering, Volume. 51, Issue 5, 20220302(2022)

Optical frequency comb in silicon nitride microresonator(Invited)

Jin Li1...2, Piyu Wang1,2, Zhengyu Wang1,2, Rui Niu1,2, Shuai Wan1,2,*, Guangcan Guo1,2, and Chunhua Dong12 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
  • 2Center For Excellence in Quantum Information and Quantum Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
  • show less
    References(42)

    [1] K J Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] H Chen, Y Xiao. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited). Infrared and Laser Engineering, 50, 20210560(2021).

    [3] C H Dong, Y D Wang, H L Wang, et al. Optomechanical interfaces for hybrid quantum networks. National Science Review, 2, 510-519(2015).

    [4] F Vollmer, L Yang. Review label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [5] L He, S K Ozdemir, L Yang. Whispering gallery microcavity lasers. Laser and Photonics Reviews, 7, 60-82(2013).

    [6] Q H Song. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Science China Physics, Mechanics & Astronomy, 62, 074231(2019).

    [7] T J Kippenberg, R Holzwarth, S A Diddams. Microresonatorbased optical frequency combs. Science, 332, 555-559(2011).

    [8] W Jin, Q F Yang, L Chang, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high Q microresonators. Nature Photonics, 15, 346-353(2021).

    [9] X Lu, G Moille, Q Li, et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nature Photonics, 13, 593-601(2019).

    [10] T J Kippenberg, K J Vahala. Cavity optomechanics: Backaction at the mesoscale. Science, 321, 1172(2008).

    [11] S Wan, R Niu, H L Ren, et al. Experimental demonstration of dissipative sensing in a self-interference microring resonator. Photonics Research, 6, 681-685(2018).

    [12] X X Xue, X P Zheng, B K Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nature Photonics, 13, 616-622(2019).

    [13] H J Chen, Q X Ji, H M Wang, et al. Chaos-assisted two-octave-spanning microcombs. Nature Communications, 11, 2336(2020).

    [14] Z Z Lu, H J Chen, W Q Wang, et al. Synthesized soliton crystals. Nature Communications, 12, 3179(2021).

    [15] H Z Weng, J Liu, A A Afridi, et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Research, 9, 1351(2021).

    [16] C L Wang, Z W Fang, A L Yi, et al. High-Q microresonators on 4 H-silicon-carbide-on-insulator platform for nonlinear photonics. Light: Science & Applications, 10, 1-11(2021).

    [17] Y Bai, M Zhang, Q Shi, et al. Brillouin-kerr soliton frequency combs in an optical microresonator. Physical Review Letters, 126, 063901(2021).

    [18] J Wang, Z Lu, W Wang, et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Research, 8, 1964-1972(2020).

    [19] W Wang, L Wang, W Zhang. Advances in soliton microcomb generation. Advanced Photonics, 2, 34001(2020).

    [20] T Tan, Z Yuan, H Zhang, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 12, 6716(2021).

    [21] D T Spencer, T Drake, T C Briles, et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [22] P Marin-Palomo, J N Kemal, M Karpov, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [23] Z L Newman, V Maurice, T Drake, et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [24] F X Wang, W Wang, R Niu, et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser & Photonics Reviews, 14, 1900190(2020).

    [25] [25] Liu K, Jin N, Cheng H, et al. 720 million quality fact integrated allwaveguide photonic resonat [C]2021 Device Research Conference (DRC), 2021: 12.

    [26] M W Puckett, K Liu, N Chauhan, et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nature Communications, 12, 934(2021).

    [27] J Liu, G Huang, R N Wang, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Communications, 12, 2236(2021).

    [28] [28] Shaw M J, Guo J, Vawter G A, et al. Fabrication techniques f lowloss silicon nitride waveguides [C]Proc of SPIE, 2005, 5720: 109118.

    [29] X Tang, V Bayot, N Reckinger, et al. A simple method for measuring si-fin sidewall roughness by afm. IEEE Transactions on Nanotechnology, 8, 611-616(2009).

    [30] X Ji, F A S Barbosa, S P Roberts, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619(2017).

    [31] J Liu, A S Raja, M Karpov, et al. Ultralowpower chip-based soliton microcombs for photonic integration. Optica, 5, 1347(2018).

    [32] S Wan, R Niu, Z Y Wang, et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photonics Research, 8, 1342-1349(2020).

    [33] S Wan, R Niu, J L Peng, et al. Fabrication of the high-Q Si3 N4 microresonators for soliton microcombs. Chinese Optics Letters, 20, 032201(2022).

    [34] G Moille, D Westly, N G Orji, et al. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Applied Physics Letters, 119, 121103(2021).

    [35] Y Hu, M Yu, D Zhu, et al. On-chip electro-optic frequency shifters and beam splitters. Nature, 599, 587-593(2021).

    [36] R K Dey, B Cui. Stitching error reduction in electron beam lithography with in-situ feedback using self-developing resist. Journal of Vacuum Science & Technology B, 31, 06F409(2013).

    [37] Z Lu, W Wang, W Zhang, et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Advances, 9, 025314(2019).

    [38] R Niu, S Wan, Z Y Wang, et al. Perfect soliton crystals in the high Q microrod resonator. IEEE Photonics Technology Letters, 33, 788-791(2021).

    [39] H Zhou, Y Geng, W Cui, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Science & Applications, 8, 1-10(2019).

    [40] J Li, S Wan, J L Peng, et al. Thermal tuning of mode crossing and the perfect soliton crystal in a Si3N4 microresonator. Optics Express, 30, 13690(2022).

    [41] X Ji, J Liu, J He, et al. Compact, spatial-mode-interaction-free, ultralowloss, nonlinear photonic integrated circuits. Communications Physics, 5, 1-9(2022).

    [42] M H P Pfeiffer, J Liu, A S Raja, et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins. Optica, 5, 884(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jin Li, Piyu Wang, Zhengyu Wang, Rui Niu, Shuai Wan, Guangcan Guo, Chunhua Dong. Optical frequency comb in silicon nitride microresonator(Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Microcavity optical frequency comb technology

    Received: Feb. 20, 2022

    Accepted: May. 13, 2022

    Published Online: Jun. 14, 2022

    The Author Email: Wan Shuai (wanshuai@ustc.edu.cn)

    DOI:10.3788/IRLA20220302

    Topics