Laser & Optoelectronics Progress, Volume. 58, Issue 18, 1811011(2021)

Two Key Technologies Influencing on Computational Ghost Imaging Quality

Rongke Gao1, Lusha Yan1,2, Chenxiang Xu2, Dekui Li2, and Zhongyi Guo2、*
Author Affiliations
  • 1School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
  • 2School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
  • show less
    References(85)

    [1] Guo Z Y, Kang Q L, Peng Z Y et al. Progress of polarization-information detection technology based on manipulations of metasurface[J]. Infrared and Laser Engineering, 49, 20201041(2020).

    [2] Wang X Y, Hu T W, Li D K et al. Performances of polarization-retrieve imaging in stratified dispersion media[J]. Remote Sensing, 12, 2895(2020).

    [3] Tao Q Q, Sun Y X, Shen F et al. Active imaging with the aids of polarization retrieve in turbid media system[J]. Optics Communications, 359, 405-410(2016).

    [4] Li D K, Guo K, Sun Y X et al. Depolarization characteristics of different reflective interfaces indicated by indices of polarimetric purity (IPPs)[J]. Sensors, 21, 1221(2021).

    [5] Hu T W, Shen F, Wang K P et al. Broad-band transmission characteristics of polarizations in foggy environments[J]. Atmosphere, 10, 342(2019).

    [6] Guo Z Y, Wang X Y, Li D K et al. Advances on theory and application of polarization information propagation[J]. Infrared and Laser Engineering, 49, 20201013(2020).

    [8] Li Z P, Huang X, Cao Y et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 8, 1532-1540(2020).

    [9] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).

    [10] Abouraddy A F, Saleh B E, Sergienko A V et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 87, 123602(2001).

    [11] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [12] Liu H L, Han S S. Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging[J]. Optics Letters, 33, 824-826(2008).

    [13] Gatti A, Brambilla E, Bache M et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802(2004).

    [14] Ferri F, Magatti D, Sala V G et al. Longitudinal coherence in thermal ghost imaging[J]. Applied Physics Letters, 92, 261109(2008).

    [15] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [16] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [18] Zhang P L, Gong W L, Shen X et al. Improving resolution by the second-order correlation of light fields[J]. Optics Letters, 34, 1222-1224(2009).

    [19] Nasr M B, Goode D P, Nguyen N et al. Quantum optical coherence tomography of a biological sample[J]. Optics Communications, 282, 1154-1159(2009).

    [20] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [21] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [22] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [23] Kong L J, Li Y N, Qian S X et al. Encryption of ghost imaging[J]. Physical Review A, 88, 013852(2013).

    [24] Chen W, Chen X D. Ghost imaging for three-dimensional optical security[J]. Applied Physics Letters, 103, 221106(2013).

    [25] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).

    [26] Yu H, Li E R, Gong W L et al. Structured image reconstruction for three-dimensional ghost imaging lidar[J]. Optics Express, 23, 14541-14551(2015).

    [27] Gong W L, Zhao C Q, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [28] Zhang P L, Gong W L, Shen X et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 82, 033817(2010).

    [29] Cheng J. Ghost imaging through turbulent atmosphere[J]. Optics Express, 17, 7916-7921(2009).

    [30] Li C, Wang T, Pu J et al. Ghost imaging with partially coherent light radiation through turbulent atmosphere[J]. Applied Physics B, 99, 599-604(2010).

    [31] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence[J]. Physical Review A, 84, 063824(2011).

    [32] Cheng J, Lin J. Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere[J]. Physical Review A, 87, 043810(2013).

    [33] Gbur G. Partially coherent beam propagation in atmospheric turbulence[J]. Journal of the Optical Society of America A, 31, 2038-2045(2014).

    [34] Tang L L, Bai Y F, Duan C et al. Effects of incident angles on reflective ghost imaging through atmospheric turbulence[J]. Laser Physics, 28, 015201(2018).

    [35] Zhang Q W, Cao L Z, Liu X et al. Imaging analysis of reflective ghost imaging in oceanic turbulence[J]. Acta Photonica Sinica, 49, 0901002(2020).

    [36] Shapiro J H. Computational ghost imaging[C]. //International Quantum Electronics Conference 2009, May 31-June 5, 2009, Baltimore, Maryland, United States, IThK7(2009).

    [37] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [39] Liu X F, Li M F, Yao X R et al. High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations[J]. AIP Advances, 3, 052121(2013).

    [40] Lu M H, Shen X, Han S S. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 31, 0711002(2011).

    [41] Chen J, Gong W L, Han S S. Sub-Rayleigh ghost imaging via sparsity constraints based on a digital micro-mirror device[J]. Physics Letters A, 377, 1844-1847(2013).

    [42] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [45] Gong W L. High-resolution pseudo-inverse ghost imaging[J]. Photonics Research, 3, 234-237(2015).

    [46] Zhang X, Meng X F, Yang X L et al. Singular value decomposition ghost imaging[J]. Optics Express, 26, 12948-12958(2018).

    [48] Huang H Y, Zhou C, Tian T et al. High-quality compressive ghost imaging[J]. Optics Communications, 412, 60-65(2018).

    [49] Huang H Y, Zhou C, Gong W L et al. Block matching low-rank for ghost imaging[J]. Optics Express, 27, 38624-38634(2019).

    [50] Tao Y, Wang X X, Yan G Q et al. Computational ghost imaging method based on Tikhonov regularization[J]. Laser & Optoelectronics Progress, 57, 021016(2020).

    [51] Liu H C. Imaging reconstruction comparison of different ghost imaging algorithms[J]. Scientific Reports, 10, 1-8(2020).

    [52] Li W W, Tong Z S, Xiao K et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 6, 1515-1523(2019).

    [53] Hu H K, Sun S, Lin H Z et al. Denoising ghost imaging under a small samplingrate via deep learning for tracking and imaging moving objects[J]. Optics Express, 28, 37284-37293(2020).

    [54] Sui L S, Du C, Xu M J et al. Information encryption based on the customized data container under the framework of computational ghost imaging[J]. Optics Express, 27, 16493-16506(2019).

    [55] Shimobaba T, Endo Y, Nishitsuji T et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).

    [56] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [57] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [58] Feng W, Zhao X D, Wu G M et al. Computational ghost imaging method based on convolutional neural network[J]. Acta Photonica Sinica, 49, 0610002(2020).

    [59] Rizvi S, Cao J, Zhang K Y et al. DeepGhost: real-time computational ghost imaging via deep learning[J]. Scientific Reports, 10, 11400(2020).

    [60] Li M D, Mathai A, Lau S L H et al. Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network[J]. Sensors, 21, 313(2021).

    [61] Zhu R G, Yu H, Tan Z J et al. Ghost imaging based on Y-net:a dynamic coding and decoding approach[J]. Optics Express, 28, 17556-17569(2020).

    [62] Zhang W L, Zhang W W, He R Q et al. Iterative denoising ghost imaging based on local Hadamard modulation[J]. Acta Optica Sinica, 36, 0411001(2016).

    [63] Phillips D B, Sun M J, Taylor J M et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 3, e1601782(2017).

    [64] Sun M J, Meng L T, Edgar M P et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017).

    [65] Zhou C, Tian T, Gao C et al. Multi-resolution progressive computational ghost imaging[J]. Journal of Optics, 21, 055702(2019).

    [66] Gao Z J, Yin J H, Bai Y F et al. Imaging quality improvement of ghost imaging in scattering medium based on Hadamard modulated light field[J]. Applied Optics, 59, 8472-8477(2020).

    [68] Li M F, Yan L, Yang R et al. Fast single-pixel imaging based on optimized reordering Hadamard basis[J]. Acta Physica Sinica, 68, 064202(2019).

    [69] Yu W K, Liu Y M. Single-pixel imaging with origami pattern construction[J]. Sensors, 19, 5135(2019).

    [70] Yu W K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 19, 4122(2019).

    [71] Vaz P G, Amaral D, Ferreira L F R et al. Image quality of compressive single-pixel imaging using different Hadamard orderings[J]. Optics Express, 28, 11666-11681(2020).

    [72] Yu X, Stantchev R I, Yang F et al. Super sub-Nyquist single-pixel imaging by total variation ascending ordering of the Hadamard basis[J]. Scientific Reports, 10, 9338(2020).

    [73] Li F Q, Zhao M, Tian Z M et al. Compressive ghost imaging through scattering media with deep learning[J]. Optics Express, 28, 17395-17408(2020).

    [74] Li J B, Le M N, Wang J et al. Object identification in computational ghost imaging based on deep learning[J]. Applied Physics B, 126, 1-10(2020).

    [75] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [76] Khamoushi S M M, Nosrati Y, Tavassoli S H. Sinusoidal ghost imaging[J]. Optics Letters, 40, 3452-3455(2015).

    [77] Zhang Z B, Wang X Y, Zheng G A et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017).

    [78] Zhang Z B, Wang X Y, Zheng G A et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).

    [79] Huang J, Shi D F, Yuan K E et al. Computational-weighted Fourier single-pixel imaging via binary illumination[J]. Optics Express, 26, 16547-16559(2018).

    [80] Meng W W, Shi D F, Huang J et al. Sparse Fourier single-pixel imaging[J]. Optics Express, 27, 31490-31503(2019).

    [81] Cao F, Zheng S Y, Zhao S M et al. Orthogonal speckle ghost imaging[J]. Journal of Signal Processing, 35, 781-785(2019).

    [82] Sha F, Sahoo S K, Lam H Q et al. Improving single pixel imaging performance in high noise condition by under-sampling[J]. Scientific Reports, 10, 19451(2020).

    [83] Rizvi S, Cao J, Zhang K Y et al. Improving imaging quality of real-time Fourier single-pixel imaging via deep learning[J]. Sensors, 19, 4190(2019).

    [84] Rizvi S, Cao J, Hao Q. Deep learning based projector defocus compensation in single-pixel imaging[J]. Optics Express, 28, 25134-25148(2020).

    [85] Yang X, Jiang P F, Jiang M F et al. High imaging quality of Fourier single pixel imaging based on generative adversarial networks at low sampling rate[J]. Optics and Lasers in Engineering, 140, 106533(2021).

    Tools

    Get Citation

    Copy Citation Text

    Rongke Gao, Lusha Yan, Chenxiang Xu, Dekui Li, Zhongyi Guo. Two Key Technologies Influencing on Computational Ghost Imaging Quality[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Mar. 28, 2021

    Accepted: Jun. 2, 2021

    Published Online: Sep. 3, 2021

    The Author Email: Guo Zhongyi (guozhongyi@hfut.edu.cn)

    DOI:10.3788/LOP202158.1811011

    Topics