Journal of Infrared and Millimeter Waves, Volume. 44, Issue 1, 29(2025)
Dual-band narrowband thermal emitter designed based on multi-objective particle swarm optimization
[1] V Rinnerbauer, Y X Yeng, W R Chan et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Optics Express, 21, 11482(2013).
[2] W R Chan, P Bermel, R C N Pilawa-Podgurski et al. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proceedings of the National Academy of Sciences, 110, 5309-5314(2013).
[3] D L C Chan, M Soljačić, J D Joannopoulos. Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express, 14, 8785(2006).
[4] M U Pralle, N Moelders, M P McNeal et al. Photonic crystal enhanced narrow-band infrared emitters. Applied Physics Letters, 81, 4685-4687(2002).
[5] K Ikeda, H T Miyazaki, T Kasaya et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Applied Physics Letters, 92, 021117(2008).
[6] H T Miyazaki, K Ikeda, T Kasaya et al. Thermal emission of two-color polarized infrared waves from integrated plasmon cavities. Applied Physics Letters, 92, 141114(2008).
[7] G Biener, N Dahan, A Niv et al. Highly coherent thermal emission obtained by plasmonic bandgap structures. Applied Physics Letters, 92, 081913(2008).
[8] X Liu, T Tyler, T Starr et al. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters, 107, 045901(2011).
[9] J A Mason, S Smith, D Wasserman. Strong absorption and selective thermal emission from a midinfrared metamaterial. Applied Physics Letters, 98, 241105(2011).
[10] S Molesky, C J Dewalt, Z Jacob. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics(2012).
[11] Z Wang, T S Luk, Y Tan et al. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films. Applied Physics Letters, 106, 101104(2015).
[12] L P Wang, S Basu, Z M Zhang. Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator. Journal of Heat Transfer, 134, 072701(2012).
[13] X Liu, Z Li, Z Wen et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 11, 19742-19750(2019).
[14] Z Wang, J K Clark, Y L Ho et al. Ultranarrow and Wavelength-Tunable Thermal Emission in a Hybrid Metal–Optical Tamm State Structure. ACS Photonics, 7, 1569-1576(2020).
[15] H Wu, Y Gao, P Xu et al. Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale. Advanced Optical Materials, 7, 1900334(2019).
[16] C Symonds, G Lheureux, J P Hugonin et al. Confined Tamm Plasmon Lasers. Nano Letters, 13, 3179-3184(2013).
[17] R M Ma, R F Oulton. Applications of nanolasers. Nature Nanotechnology, 14, 12-22(2019).
[18] A Lochbaum, Y Fedoryshyn, A Dorodnyy et al. On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing. ACS Photonics, 4, 1371-1380(2017).
[19] M Vlk, A Datta, S Alberti et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light: Science & Applications, 10, 26(2021).
[20] A Lochbaum, A Dorodnyy, U Koch et al. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design. Nano Letters, 20, 4169-4176(2020).
[21] C Zhang, K Wu, Y Zhan et al. Planar microcavity-integrated hot-electron photodetector. Nanoscale, 8, 10323-10329(2016).
[22] M He, J R Nolen, J Nordlander et al. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nature Materials, 20, 1663-1669(2021).
[23] A K S O Hassan, A S Etman, E A Soliman. Optimization of a Novel Nano Antenna With Two Radiation Modes Using Kriging Surrogate Models. IEEE Photonics Journal, 10, 1-17(2018).
[24] J Nagar, S D Campbell, Q Ren et al. Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2, 147-158(2017).
[25] P R Wiecha, A Arbouet, C Girard et al. Evolutionary Multi-Objective Optimisation of Colour Pixels based on Dielectric Nano-Antennas. Nature Nanotechnology, 12, 163-169(2017).
Get Citation
Copy Citation Text
Qian-li QIU, Jin-guo ZHANG, Dong-jie ZHOU, Chong TAN, Yan SUN, Jia-ming HAO, Ning DAI. Dual-band narrowband thermal emitter designed based on multi-objective particle swarm optimization[J]. Journal of Infrared and Millimeter Waves, 2025, 44(1): 29
Category: Infrared Physics, Materials and Devices
Received: Apr. 16, 2024
Accepted: --
Published Online: Mar. 5, 2025
The Author Email: SUN Yan (sunny@mail.sitp.ac.cn), HAO Jia-ming (jmhao@fudan.edu.cn)