Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 1852(2022)

Recent Development on High Thermal Conductivity Diamond Synthesized by Microwave Plasma Chemical Vapor Deposition and Its Devices Applications

ZHAO Jiwen1,*... HAO Xiaobin1, ZHAO Kechen1, LI Yicun1, ZHANG Sen1, LIU Kang1, DAI Bing1, GUO Huaixin2, HAN Jiecai1, and ZHU Jiaqi13 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(92)

    [1] [1] GASKA R, OSINSKY A. Self-heating in high-power AlGaN-GaN HFETs[J]. IEEE Electr Device L, 1998, 19(3): 89-91.

    [3] [3] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Phys Rev Lett, 1993, 70(24): 3764-3767.

    [7] [7] WANG W Y, THOMAS M. Large colorless HPHT synthetic gem diamonds from China[J]. Gems Gemol, 2016, 52(1): 101-102.

    [8] [8] KAMO M, SATO Y, MATSUMOTO S, et al. Diamond synthesis from gas phase in microwave plasma[J]. J Cryst Growth, 1983, 62(3): 642-644.

    [9] [9] HARRIS S J. Mechanism for diamond growth from methyl radicals[J]. Appl Phys Lett, 1990, 56(23): 2298-2300.

    [10] [10] GOODWIN D G. Scaling laws for diamond chemical vapor deposition. I. Diamond surface chemistry[J]. J Appl Phys, 1993, 74(11): 6888-6894.

    [11] [11] HARRIS S J, GOODWIN D G. Growth on the reconstructed diamond (100) surface[J]. J Phys Chem, 1993, 97(1): 23-28.

    [12] [12] BACHMANN P K, MESSIER R. Emerging technology of diamond thin films[J]. Chem Eng News, 1989, 67(20): 24-38.

    [13] [13] GROTJOHN T, LISKE R, HASSOUNI K, et al. Scaling behavior of microwave reactors and discharge size for diamond deposition[J]. Diam Relat Mater, 2005, 14(3-7): 288-291.

    [14] [14] GAUDREAU M P J, SMITH D K. Microwave plasma generator[P]. US Patent, 4866346. 1989-9-12.

    [15] [15] FNER M, WILD C, KOIDL P. Simulation and development of optimized microwave plasma reactors for diamond deposition[J]. Surf Coat Tech, 1999, 116-119: 853-862.

    [16] [16] BESEN M M, SEVILLANO E, SMITH D K. Microwave plasma reactor[P]. US Patent, 5501740. 1996-3-26.

    [17] [17] BESEN M M, SEVILLANO E, SMITH D K. Microwave plasma reactor[P]. US Patent, 5556475. 1996-9-17.

    [18] [18] LI X J, TANG W Z, YU S W, et al. Design of novel plasma reactor for diamond film deposition[J]. Diam Relat Mater, 2011, 20(4): 480-484.

    [19] [19] SU J, LI Y, LI X, et al. A novel microwave plasma reactor with a unique structure for chemical vapor deposition of diamond films[J]. Diam Relat Mater, 2014, 42(2): 28-32.

    [20] [20] LI Y F, SU J J, LIU Y Q, et al. Design of a new TM021 mode cavity type MPCVD reactor for diamond film deposition[J]. Diam Relat Mater, 2014, 44: 88-94.

    [21] [21] FNER M, WILD C, KOIDL P. Novel microwave plasma reactor for diamond synthesis[J]. Appl Phys Lett, 1998, 72(10): 1149-1151.

    [22] [22] LI Y F, SU J J, LIU Y Q, et al. A circumferential antenna ellipsoidal cavity type MPCVD reactor developed for diamond film deposition[J]. Diam Relat Mater, 2015, 51: 24-29.

    [23] [23] PLEULER E, WILD C, FNER M, et al. The CAP-reactor, a novel microwave CVD system for diamond deposition[J]. Diam Relat Mater, 2002, 11(3-6): 467-471.

    [24] [24] SU J J, LI Y F, DING M H, et al. A dome-shaped cavity type microwave plasma chemical vapor deposition reactor for diamond films deposition[J]. Vacuum, 2014, 107: 51-55.

    [25] [25] WENG J, XIONG L W, WANG J H, et al. Investigation of depositing large area uniform diamond films in multi-mode MPCVD chamber[J]. Diam Relat Mater, 2012, 30: 15-19.

    [26] [26] FNER M, WILD C, KOIDL P. Numerical simulations of microwave plasma reactors for diamond CVD[J]. Surf Coat Tech, 1995, 74(1-3): 221-226.

    [27] [27] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Modeling and numerical analyses of microwave plasmas for optimizations of a reactor design and its operating conditions[J]. Diam Relat Mater, 2005, 14(11/12): 1776-1779.

    [28] [28] LI Y F, AN X M, LIU X C, et al. A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films[J]. Diam Relat Mater, 2017, 78: 67-72.

    [29] [29] BOLSHAKOV A P, RALCHENKO V G, POLSKIY A V, et al. Growth of single-crystal diamonds in microwave plasma[J]. Plasma Phys Rep, 2012, 38(13): 1113-1118.

    [30] [30] BUSHUEV E V, YUROV V Y, BOLSHAKOV A P, et al. Express in situ measurement of epitaxial CVD diamond film growth kinetics[J]. Diam Relat Mater, 2012, 72: 61-70.

    [31] [31] BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities[J]. Diam Relat Mater, 2019, 97: 107466.

    [32] [32] BOLSHAKOV A P, RALCHENKO V G, SHU G Y, et al. Single crystal diamond growth by MPCVD at subatmospheric pressures[J]. Mater Today Commun, 2020, 25: 101635.

    [33] [33] CHAYAHARA A, MOKUNO Y, HORINO Y, et al. The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD[J]. Diam Relat Mater, 2004, 13: 1954-1958.

    [34] [34] MOKUNO Y, CHAYAHARA A, SODA Y, et al. Synthesizing single- crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J]. Diam Relat Mater, 2005, 14: 1743-1746.

    [35] [35] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Simulation with an improved plasma model utilized to design a new structure of microwave plasma discharge for chemical vapor deposition of diamond crystals[J]. Diam Relat Mater, 2008, 17: 494-497.

    [36] [36] MOKUNO Y, CHAYAHARA A, YAMADA H, et al. Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation[J]. Diam Relat Mater, 2009, 18: 1258-1261.

    [37] [37] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond[J]. Diam Relat Mater, 2013, 33: 27-31.

    [38] [38] KUO K P, ASMUSSEN J. An experimental study of high pressure synthesis of diamond films using a microwave cavity plasma reactor[J]. Diam Relat Mater, 1997, 6: 1097-1105.

    [39] [39] ASMUSSEN J, GROTJOHN T A, SCHUELKE T, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis[J]. Appl Phys Lett, 2008, 93: 031502.

    [40] [40] HEMAWAAN K W, GROTJOHN T A, REINHARD D K, et al. Improved microwave plasma cavity reactor for diamond synthesis at high-pressure and high power density[J]. Diam Relat Mater, 2010, 19: 1446-1452.

    [41] [41] GU Y J, LU J, GROTJOHN T, et al. Microwave plasma reactor design for high pressure and high power density diamond synthesis[J]. Diam Relat Mater, 2012, 24: 210-214.

    [42] [42] GICQUEL A, HASSOUNI K, FARHAAT S, et al. Spectroscopic analysis and chemical kinetics modeling of a diamond deposition plasma reactor[J]. Diam Relat Mater, 1994, 3: 581-586.

    [43] [43] LOMBARDI G, HASSOUNI K, STANCU G D, et al. Study of an H2/CH4 moderate pressure microwave plasma used for diamond deposition: Modelling and IR tuneable diode laser diagnostic[J]. Plasma Sources Sci T, 2005, 14: 440-450.

    [44] [44] SILVA F, HASSOUNI K, BONNIN X, et al. Microwave engineering of plasma-assisted CVD reactors for diamond deposition[J]. J Phys Condens Matt, 2009, 21: 364202.

    [45] [45] GRAEBNER J E, JIN S, KAMMLOTT G W, et al. Unusually high thermal conductivity in diamond films[J]. Appl Phys Lett, 1992, 60(13): 1576-1578.

    [46] [46] WARD A, BROIDO D, STEWART D, et al. Ab initio theory of the lattice thermal conductivity in diamond[J]. Phys Rev B, 2009, 80(12): 125203-125203.

    [47] [47] RALCHENKO V G, INYUSHKIN A V, SHU G Y, et al. Thermal conductivity of diamond mosaic crystals grown by chemical vapor deposition: Thermal resistance of junctions[J]. Phys Rev Appl, 2021, 13(16): 014049

    [48] [48] DUSSAIGNE A, MALINVERNI M, D MARTIN, et al. GaN grown on (111) single crystal diamond substrate by molecular beam epitaxy[J]. J Cryst Growth, 2009, 311(21): 4539-4542.

    [49] [49] DUSSAIGNE A, GONSCHOREK M, MALINVERNI M, et al. High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate[J]. Jap J Appl Phys, 2010, 49(6): 1212-1219.

    [50] [50] ALOMARI M, DUSSAIGNE A, MARTIN D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond[J]. Electron Lett, 2010, 46(4): 299-301.

    [51] [51] HIRAMA K, TANIYASU Y, KASU M. AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy[J]. Appl Phys Lett, 2011, 98(16): 1214.

    [52] [52] HIRAMA K, KASU M, TANIYASU Y. RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond[J]. IEEE Electron Dev Lett, 2012, 33(4): 513-515.

    [53] [53] SCHUSTER F, FURTMAYR F, ZAMANI R, et al. Self-assembled GaN nanowires on diamond[J]. Nano Lett, 2012, 12(5): 2199-2204.

    [54] [54] HETZL M, SCHUSTER F, WINNERL A, et al. GaN nanowires on diamond[J]. Mater Sci Semicon Proc, 2016, 48: 65-78.

    [55] [55] PANTLE F, BECKER F, KRAUT M, et al. Selective area growth of GaN nanowires and nanofins by molecular beam epitaxy on heteroepitaxial diamond (001) substrates[J]. Nanoscale Adv, 2021, 3(13): 3835-3845.

    [56] [56] TUCKERMAN D B, PEASE R. High-performance heat sinking for VLSI[J]. IEEE Electron Dev Lett, 1981, 2(5): 126-129.

    [57] [57] SHINODA M, GATTASS R R, MAZUR E. Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces[J]. J Appl Phys, 2009, 105(5): 53102.

    [58] [58] SU S, LI J, LEE G C B, et al. Femtosecond laser-induced microstructures on diamond for microfluidic sensing device applications[J]. Appl Phys Lett, 2013, 102(23): 231913.

    [59] [59] JEDRKIEWICZ O, KUMAR S, SOTILLO B, et al. Pulsed Bessel beam-induced microchannels on a diamond surface for versatile microfluidic and sensing applications[J]. Opt Mater Express, 2017, 7(6): 1962.

    [60] [60] MLLER R, SCHMID P, MUNDING A, et al. Elements for surface microfluidics in diamond[J]. Diam Relat Mater, 2004, 13(4-8): 780-784.

    [61] [61] FU J, ZHU T F, ZHANG M H, et al. Fabrication of single crystal diamond microchannels for microelectromechanical systems[J]. Diam Relat Mater, 2017, 80: 64-68.

    [62] [62] FU J, LIU Z, ZHU T, et al. Fabrication of microchannels in single crystal diamond for microfluidic systems[J]. Microfluid Nanofluid, 2018, 22(9): 92.

    [64] [64] FANG X Y, CUI J L, FAN Z J, et al. Study on micromachining of polycrystalline diamond by UV nanosecond laser[J]. Integr Ferroelectr, 2021, 219(1): 28-38.

    [65] [65] CUI J L, FANG X Y, DONG X Y, et al. Fabrication of PCD skiving cutter by UV nanosecond laser[J]. Materials, 2021, 14(14): 4027.

    [66] [66] ULLAH N, CUI J, FAN Z, et al. Ablation threshold measurement and chemical modification of UV nanosecond laser micromachining of polycrystalline diamond[J]. Phys Status Solidi, 2021, 218(24): 2100450.

    [67] [67] DOU J, CUI J, FANG X, et al. Theoretical and experimental study on machining rectangular microgroove of diamond by femtosecond laser[J]. Integr Ferroelectr, 2020, 208(1): 104-116.

    [68] [68] DOU J, SUN Y, XU M, et al. Process research on micro-machining diamond microgroove by femtosecond laser[J]. Integr Ferroelectr, 2019, 198(1): 9-19.

    [69] [69] SUN Y, DOU J, XU M, et al. Research on the mechanism of micromachining of CVD diamond by femtosecond laser[J]. Ferroelectrics, 2019, 549(1): 266-275.

    [70] [70] YANG Q, ZHAO J, HUANG Y, et al. A diamond made microchannel heat sink for high-density heat flux dissipation[J]. Appl Therm Eng, 2019, 158: 113804.

    [71] [71] YANG Q, MIAO J, ZHAO J, et al. Flow boiling of ammonia in a diamond-made microchannel heat sink for high heat flux hotspots[J]. J Therm Sci, 2020, 29(5): 1333-1344.

    [72] [72] CHU K K, CHAO P C, DIAZ J A, et al. S2-T4: Low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]//Lester Eastman Conference on High Performance Devices, IEEE, 2014.

    [73] [73] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE T Electron Dev, 2015, 62(11): 3658-3664.

    [74] [74] CHU K, CHAO P C, CREAMER C. Method for gallium nitride on diamond semiconductor wafer production[P]. US Patent, 14/800387. 2019-2-7.

    [75] [75] CHAO P C, CHU K, DIAZ J, et al. GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. MRS Adv, 2016, 1(2): 147-155.

    [76] [76] MU F, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Mater, 2018, 150: 148-151.

    [77] [77] MU F, SUGA T. Room temperature GaN bonding by surface activated bonding methods[C]//19th International Conference on Electronic Packaging Technology, Shanghai, China, 2018: 1-4.

    [78] [78] MINOURA Y, OHKI T, OKAMOTO N, et al. Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs[J]. Jap J Appl Phys, 2019, 59: SGGD03.

    [79] [79] LI C M, ZHU R H, LIU J L, et al. Effect of arc characteristics on the properties of large size diamond wafer prepared by DC arc plasma jet CVD[J]. Diam Relat Mater, 2013, 39(39): 47-52.

    [81] [81] LIU T, KONG Y, WU L, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Dev Lett, 2017, 38(10): 1417-1420.

    [83] [83] RANTAMAKI A, LINDFORS J, SILVENNOINEN M, et al. Low temperature gold-to-gold bonded semiconductor disk laser[J]. IEEE Photon Technol Lett, 2013, 25(11): 1062-1065.

    [84] [84] JAGANNADHAM K. Multilayer diamond heat spreaders for electronic power devices[J]. Solid-State Electron, 1998, 42(12): 2199-2208.

    [85] [85] CALAME J P, MYERS R E, WOOD F N, et al. Simulations of direct-die-attached microchannel coolers for the thermal management of GaN-on-SiC microwave amplifiers[J]. IEEE T Compon Pack T, 2005, 28(4): 797-809.

    [86] [86] SHEIKHI, HUO Y, TSAI C H, et al. Prior-to-bond annealing effects on the diamond-to-copper heterogeneous integration using silver- indium multilayer structure[J]. J Mater Sci Mater Electron, 2020, 31(4): 8059-8071.

    [87] [87] HAN Y, LAU B L, ZHANG X, et al. Enhancement of hotspot cooling with diamond heat spreader on Cu microchannel heat sink for GaN-on-Si device[J]. IEEE T Comp Pack Man, 2014, 4(6): 983-990.

    [88] [88] WARZOHA R J, BOTELER L, SMITH A N, et al. Steady-state measurements of thermal transport across highly conductive interfaces[J]. Int J Heat Mass Transf, 2019, 130: 874-881.

    [89] [89] LIANG J, OHNO Y, YAMASHITA Y, et al. Characterization of nanoscopic Cu/diamond interfaces prepared by surface activated bonding: Implications for thermal management[J]. ACS Appl Nano Mater, 2020, 3(3): 2455-2462.

    [90] [90] FU S, MEI Y, LU G Q, et al. Pressureless sintering of nanosilver paste at low temperature to join large area (≥100 mm2) power chips for electronic packaging[J]. Mater Lett, 2014, 128: 42-45.

    [91] [91] WANG T, CHEN X, LU G Q, et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. J Electron Mater, 2007, 36(10): 1333-1340.

    [92] [92] LI Y, JING H, HAN Y, et al. Microstructure and joint properties of nano-silver paste by ultrasonic-assisted pressureless sintering[J]. J Electron Mater, 2016, 45(6): 3003-3012.

    [93] [93] SEELMANN-EGGEBERT M, MEISEN P, SCHAUDEL F, et al. Heat-spreading diamond films for GaN-based high-power transistor devices[J]. Diam Relat Mater, 2001, 10(3): 744-749.

    [94] [94] ALOMARI M, DIPALO M, ROSSI S, et al. Diamond overgrown InAlN/GaN HEMT[J]. Diam Relat Mater, 2011, 20(4): 604-608.

    [95] [95] MEYER D J, FEYGELSON T I, ANDERSON T J, et al. Large-signal RF performance of nanocrystalline diamond coated AlGaN/GaN high electron mobility transistors[J]. IEEE Electron Dev Lett, 2014, 35(10): 1013-1015.

    [96] [96] TADJER M J, ANDERSON T J, FEYGELSON T I, et al. Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process[J]. Phys Status Solidi, 2016, 213(4): 893-897.

    [97] [97] FRANCIS D, FAILI F, BABIC D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates[J]. Diam Relat Mater, 2010, 19(2/3): 229-233.

    [98] [98] CHAO P C, CHU K, CREAMER C. A new high power GaN-on- diamond HEMT with low-temperature bonded substrate technology [C]//CS Mantech Conference, New Orleans, Louisiana, 2013.

    [99] [99] YAN Z, RAMANETI R, ANAYA J, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs[J]. Appl Phys Lett, 2017, 111(4): 287-305.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Jiwen, HAO Xiaobin, ZHAO Kechen, LI Yicun, ZHANG Sen, LIU Kang, DAI Bing, GUO Huaixin, HAN Jiecai, ZHU Jiaqi. Recent Development on High Thermal Conductivity Diamond Synthesized by Microwave Plasma Chemical Vapor Deposition and Its Devices Applications[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1852

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 25, 2022

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email: Jiwen ZHAO (zhaojw@hit.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics