Laser & Optoelectronics Progress, Volume. 57, Issue 7, 071611(2020)

Research Progress of Raman and Frequency Mixing for Visible Lasers Based on Vanadate Crystals

Mengyao Cheng, Yanmin Duan*, Yinglu Sun, Li Zhang, and Haiyong Zhu**
Author Affiliations
  • Institute of Laser and Optoelectronic Technology, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • show less
    References(79)

    [1] Kaminskii A A, Ueda K I, Eichler H J et al. Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 194, 201-206(2001).

    [2] Chen Y F. Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd∶GdVO4 laser[J]. Applied Physics B, 78, 685-687(2004).

    [3] Chen Y F. Efficient subnanosecond diode-pumped passively Q-switched Nd∶YVO4 self-stimulated Raman laser[J]. Optics Letters, 29, 1251-1253(2004).

    [4] Su K W, Chang Y T, Chen Y F. Power scale-up of the diode-pumped actively Q-switched Nd∶YVO4 Raman laser with an undoped YVO4 crystal as a Raman shifter[J]. Applied Physics B, 88, 47-50(2007).

    [5] Pask H M, Dekker P, Mildren R P et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J]. Progress in Quantum Electronics, 32, 121-158(2008).

    [6] Liu B. The researches on yellow light generated by Frequency doubling of the Raman laser[D]. Jinan: Shandong University, 20(2007).

    [8] Basiev T T, Sobol A A, Voronko Y K et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers[J]. Optical Materials, 15, 205-216(2000).

    [9] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [11] Koechner W, Koechner W[M]. 固体激光工程, 356-365(2002).

         [M]. Solid-state laser engineering, 356-365(2002).

    [12] Yoneda H, Zhang J, Tang D Y et al. Impulsive stimulated Raman scattering in tetragonal GdVO4 single crystal: many-phonon Stokes and cross-cascaded lasing[J]. Laser Physics Letters, 12, 085801(2015).

    [13] Kaminskii A A, Eichler H J, Rhee H et al. New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping[J]. Laser Physics Letters, 5, 804-811(2008).

    [14] Liu F Q. The researches on characteristics of crystal and performance of diode-pumped Nd∶LuVO4 lasers[D]. Jinan: Shandong University, 5(2007).

    [15] Kaminskii A A, Bettinelli M, Dong J et al. Nanosecond Nd 3+∶LuVO4 self-Raman laser[J]. Laser Physics Letters, 6, 374-379(2009).

    [16] Zhu H Y, Guo J H, Ruan X K et al. Cascaded self-Raman laser emitting around 1.2-1.3 μm based on a c-cut Nd∶YVO4 crystal[J]. IEEE Photonics Journal, 9, 1500807(2017).

    [17] Cai W Y, Duan Y M, Li J T et al. Diode-pumped c-cut Nd∶Lu0.99La0.01VO4 self-stimulated Raman laser at 1181 nm[J]. Chinese Physics Letters, 32, 034206(2015).

    [19] Zhu H Y, Duan Y M, Zhang G et al. Efficient continuous-wave YVO4/Nd∶YVO4 Raman laser at 1176 nm[J]. Applied Physics B, 103, 559-562(2011).

    [21] Duan Y M, Zhang J, Zhu H Y et al. Compact passively Q-switched RbTiOPO4 cascaded Raman operation[J]. Optics Letters, 43, 4550-4553(2018).

    [22] Zhu H Y, Duan Y M, Zhang G et al. Efficient second harmonic generation of double-end diffusion-bonded Nd∶YVO4 self-Raman laser producing 79 W yellow light[J]. Optics Express, 17, 21544-21550(2009).

    [23] Kravtsov N V, Naumkin N I. Mode self-locking in stimulated Raman emission[J]. Soviet Journal of Quantum Electronics, 9, 223-224(1979).

    [24] Lisinetskii V A, Busko D N, Chulkov R V et al. Self-mode locking at multiple Stokes generation in the Raman laser[J]. Optics Communications, 283, 1454-1458(2010).

    [25] Ding S H, Zhang X Y, Wang Q P et al. Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method[J]. Physical Review A, 76, 053830(2007).

    [26] Jiang P B, Zhang G Z, Liu J et al. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd∶YAG/YVO4 intracavity Raman laser at 1176 nm[J]. Journal of Physics D: Applied Physics, 50, 465303(2017).

    [27] Liu J, Ding X, Jiang P B et al. 103-W actively Q-switched Nd∶YVO4/YVO4 folded coupled-cavity Raman laser at 1176 nm[J]. Applied Optics, 57, 3154-3158(2018).

    [28] Zhou Q Q, Shi S C, Chen S M et al. First-Stokes wavelengths at 1175.8 and 1177.1 nm generated in a diode end-pumped Nd∶YVO4 /LuVO4 Raman laser[J]. Chinese Physics Letters, 36, 014205(2019).

    [30] Kores C C, Jakutis-Neto J, Geskus D et al. Diode-side-pumped continuous wave Nd 3+∶YVO4 self-Raman laser at 1176 nm[J]. Optics Letters, 40, 3524-3527(2015).

    [31] Li L, Liu Z J, Zhang X Y et al. Characteristics of the temperature-tunable Nd∶YAG/YVO4 Raman laser[J]. Optics Letters, 37, 2637-2639(2012).

    [32] Du C L, Zhang L, Yu Y Q et al. 3.1 W laser-diode-end-pumped composite Nd∶YVO4 self-Raman laser at 1176 nm[J]. Applied Physics B, 101, 743-746(2010).

    [33] Fan L, Fan Y X, Wang H T. A compact efficient continuous-wave self-frequency Raman laser with a compositeYVO4/Nd∶YVO4/YVO4 crystal[J]. Applied Physics B, 101, 493-496(2010).

    [34] Chen M T, Dai S B, Zhu S Q et al. Multi-watt passively Q-switched self-Raman laser based on a c-cut Nd∶YVO4 composite crystal[J]. Journal of the Optical Society of America B, 36, 524-532(2019).

    [35] Lee A J, Lin J P, Pask H M. Near-infrared and orange-red emission from a continuous-wave, second-Stokes self-Raman Nd∶GdVO4 laser[J]. Optics Letters, 35, 3000-3002(2010).

    [36] Chen W D, Wei Y, Huang C H et al. Second-Stokes YVO4/Nd∶YVO4/YVO4 self-frequency Raman laser[J]. Optics Letters, 37, 1968-1970(2012).

    [37] Du C L, Huang G X, Yu Y Q et al. Q-switched mode-locking of second-Stokes pulses in a diode-pumped YVO4/Nd∶YVO4/YVO4 self-Raman laser[J]. Laser Physics, 24, 125003(2014).

    [38] Guo J H, Zhu H Y, Duan Y M et al. Cascaded c-cut Nd∶YVO4 self-Raman laser operation with a single 259 cm -1 shift[J]. Journal of Optics, 19, 035501(2017).

    [39] Xie Z, Duan Y M, Guo J H et al. Cascaded a-cut Nd∶YVO4 self-Raman with second-Stokes laser at 1313 nm[J]. Journal of Optics, 19, 115501(2017).

    [40] Zhang X M, Chen S M, Shi S C et al. Study on the performance of cascaded Nd∶GdVO4 self-Raman laser at 1309 nm[J]. Infrared and Laser Engineering, 48, 47-51(2019).

    [41] Liu J, Ding X, Jiang P B et al. High-performance second-Stokes generation of a Nd∶YVO4/YVO4 Raman laser based on a folded coupled cavity[J]. Optics Express, 26, 10171-10178(2018).

    [43] Dekker P, Pask H M, Spence D J et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd∶GdVO4 at 586.5 nm[J]. Optics Express, 15, 7038-7046(2007).

    [44] Lee A J, Pask H M, Omatsu T et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics B, 88, 539-544(2007).

    [45] Lee A J, Pask H M, Dekker P et al. High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd∶GdVO4[J]. Optics Express, 16, 21958-21963(2008).

    [46] Lü Y, Zhang X H, Li S T et al. All-solid-state cw sodium D_2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd 3+∶LuVO4 crystal[J]. Optics Letters, 35, 2964-2966(2010).

    [47] Lü Y F, Cheng W B, Xiong Z et al. Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd∶YVO4 laser under direct 880 nm diode laser pumping[J]. Laser Physics Letters, 7, 787-789(2010).

    [48] Lee A J, Pask H M, Spence D J et al. Efficient 53 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd∶GdVO4 laser[J]. Optics Letters, 35, 682-684(2010).

    [49] Li X L, Lee A J, Pask H M et al. Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd∶YVO4 self-Raman laser[J]. Optics Letters, 36, 1428-1430(2011).

    [50] Tan Y, Fu X H, Zhai P et al. An efficient cw laser at 560 nm by intracavity sum-frequency mixing in a self-Raman Nd∶LuVO4 laser[J]. Laser Physics, 23, 045806(2013).

    [52] Li X L, Pask H M, Lee A J et al. Miniature wavelength-selectable Raman laser: new insights for optimizing performance[J]. Optics Express, 19, 25623-25631(2011).

    [54] Wang B S, Tan H M, Peng J Y et al. Low threshold, actively Q-switched Nd 3+∶YVO4 self-Raman laser and frequency doubled 588 nm yellow laser[J]. Optics Communications, 271, 555-558(2007).

    [55] Omatsu T, Lee A, Pask H M et al. Passively Q-switched yellow laser formed by a self-Raman composite Nd∶YVO4/YVO4 crystal[J]. Applied Physics B, 97, 799-804(2009).

    [56] Duan Y M, Zhu H Y, Huang C H et al. Potential sodium D_2 resonance radiation generated by intra-cavity SHG of a c-cut Nd∶YVO4 self-Raman laser[J]. Optics Express, 19, 6333-6338(2011).

    [59] Su F F, Zhang X Y, Wang W T et al. Diode-pumped intracavity yellow-green Raman laser at 560 nm with sum-frequency-generation[J]. Optics & Laser Technology, 66, 122-124(2015).

    [60] Chang Y T, Chang H L, Su K W et al. High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation[J]. Optics Express, 17, 11892-11897(2009).

    [61] Zhu H Y, Duan Y M, Zhang G et al. Yellow-light generation of 57 W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 34, 2763-2765(2009).

    [62] Du C L, Guo Y Y, Yu Y Q et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559 nm[J]. Optics & Laser Technology, 47, 43-46(2013).

    [63] Mildren R P, Pask H M, Ogilvy H et al. Discretely tunable, all-solid-state laser in the green, yellow, and red[J]. Optics Letters, 30, 1500-1502(2005).

    [64] Pask H M, Mildren R P, Piper J A. Optical field dynamics in a wavelength-versatile, all-solid-state intracavity cascaded pulsed Raman laser[J]. Applied Physics B, 93, 507-513(2008).

    [65] Lee A J, Spence D J, Piper J A et al. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible[J]. Optics Express, 18, 20013-20018(2010).

    [67] Li X L. Multiwavelength visible laser based on the stimulated Raman scattering effect and beta Barium borate angle tuning[J]. Chinese Optics Letters, 14, 021404(2016).

    [68] Chen Y F, Liu Y C, Pan Y Y et al. Efficient high-power dual-wavelength lime-green Nd∶YVO4 lasers[J]. Optics Letters, 44, 1323-1326(2019).

    [69] Chen Y F, Pan Y Y, Liu Y C et al. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd∶YVO4 self-Raman crystal[J]. Optics Express, 27, 2029-2035(2019).

    [70] Yue Y, Ding H, Chen C et al. 3D self-assembly technique applied to manufacturing microsphere whispering gallery mode laser[J]. Proceedings of SPIE, 11209, 112091P(2019).

    [71] Guo J, Zhu H Y, Chen S M et al. Yellow, lime and green emission selectable by BBO angle tuning in Q-switched Nd∶YVO4 self-Raman laser[J]. Laser Physics Letters, 15, 075803(2018).

    [72] Chen S M, Cheng M Y, Zhu H Y et al. Orange, yellow and green emissions generated in Q-switched Nd∶YALO3/YVO4 Raman laser[J]. Journal of Luminescence, 214, 116555(2019).

    [73] Mao T W, Duan Y M, Chen S M et al. Yellow and orange light selectable output generated by Nd∶YAP/YVO4/LBO Raman laser[J]. IEEE Photonics Technology Letters, 31, 1112-1115(2019).

    [74] Runcorn T H, Gorlitz F G, Murray R T et al. Visible Raman-shifted fiber lasers for biophotonic applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018).

    [75] Staples G, Wu H. Qian J et al. Multi-wavelength excitation in Raman spectroscopy[J]. Laser Focus World, 51, 61-63(2015).

    [77] Liu W L, Zhou C Q, Ren Q S. Solid-state multi-wavelength lasers equipment for retina treatment[J]. Chinese Journal of Medical Instrumentation, 36, 326-328(2012).

    Tools

    Get Citation

    Copy Citation Text

    Mengyao Cheng, Yanmin Duan, Yinglu Sun, Li Zhang, Haiyong Zhu. Research Progress of Raman and Frequency Mixing for Visible Lasers Based on Vanadate Crystals[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071611

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 3, 2020

    Accepted: Mar. 19, 2020

    Published Online: Mar. 31, 2020

    The Author Email: Duan Yanmin (ymduan@wzu.edu.cn), Zhu Haiyong (hyzhu.opt@gmail.com)

    DOI:10.3788/LOP57.071611

    Topics