Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 3, 1110(2024)
Application of FactSage Thermodynamic Calculation on Slag Corrosion Resistance of Refractories
[1] [1] BALE C W, CHARTRAND P, DEGTEROV S A, et al. FactSage thermochemical software and databases[J]. Calphad, 2002, 26(2): 189-228.
[2] [2] CAO Z M, SONG X Y, QIAO Z Y. Thermodynamic modeling software FactSage and its application[J]. Chinese Journal of Rare Metals, 2008, 32(2): 216-219 (in Chinese).
[3] [3] BALE C W, BLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases: recent developments[J]. Calphad, 2009, 33(2): 295-311.
[4] [4] BALE C W, BLISLE E, CHARTRAND P, et al. Reprint of: FactSage thermochemical software and databases, 2010-2016[J]. Calphad, 2016, 55: 1-19.
[5] [5] JUNG I H, DECTEROV S A, PELTON A D. Critical thermodynamic evaluation and optimization of the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 systems[J]. Journal of Phase Equilibria and Diffusion, 2004, 25(4): 329-345.
[6] [6] OH M K, PARK J H. Effect of fluorspar on the interfacial reaction between electric arc furnace slag and magnesia refractory: competitive corrosion-protection mechanism of magnesiowüstite layer[J]. Ceramics International, 2021, 47(14): 20387-20398.
[7] [7] SEOK S H, JUNG S M, LEE Y S, et al. Viscosity of highly basic slags[J]. ISIJ International, 2007, 47(8): 1090-1096.
[8] [8] ERIKSSON G, PELTON A D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 systems[J]. Metallurgical Transactions B, 1993, 24(5): 807-816.
[9] [9] ERIKSSON G, HACK K, PETERSEN S. ChemApp-a programmable thermodynamic calculation interface. Werkstoffwoche’96, Symposium 8: Simulation, Modellierung, Informationssysteme, Hirsch J: DGM Informationsgesellschaft Verlag, 1997.
[10] [10] JUNG I H, VAN ENDE M A. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation[J]. Metallurgical and Materials Transactions B, 2020, 51(5): 1851-1874.
[11] [11] GEHRE P, ANEZIRIS C G, BEREK H, et al. Corrosion of magnesium aluminate spinel-rich refractories by sulphur-containing slag[J]. Journal of the European Ceramic Society, 2015, 35(5): 1613-1620.
[12] [12] RAMULT J, WINIEWSKA T K, PROROK R, et al. Fundamental investigations on the high-temperature corrosion of spinel-forming alumina castables by steel slags[J]. Applied Sciences, 2022, 12(2): 704.
[13] [13] JASTRZBSKA I, LUDWIG M, NIEEK E, et al. Corrosion study of novel Cr-free alumina-spinel refractory material dedicated to the copper industry[J]. Journal of the European Ceramic Society, 2022, 42(15): 7311-7327.
[14] [14] YEHOROV A, MA G J, VOLKOVA O. Interaction between MgO-C-bricks and ladle slag with a 1∶1 CaO/Al2O3 ratio and varying SiO2 content[J]. Ceramics International, 2021, 47(8): 11677-11686.
[15] [15] LIU G F, LI Y W, ZHU T B, et al. Influence of the atmosphere on the mechanical properties and slag resistance of magnesia-chrome bricks[J]. Ceramics International, 2020, 46(8): 11225-11231.
[16] [16] WANG G Y, ZHAO H Z, HUANG R Q, et al. Corrosion mechanism of AOD slag on magnesia calcium refractories[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1496-1505 (in Chinese).
[17] [17] CHENG Y Q, ZHAO H Z, PAN L T, et al. Performance and corrosion mechanism of molten iron ladle Al2O3-SiC-C lining bricks for stainless steel smelting[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 329-337 (in Chinese).
[18] [18] JIN S L, LI Y W, LI Y B, et al. Corrosion simulation of Pansteel blast furnace TiO2-containing slag to refractory aggregates in iron runner[J]. Refractories, 2009, 43(2): 145-148 (in Chinese).
[19] [19] SANG S B, LI Y W, ZHU T B, et al. Discussion on lining materials of melting and separation furnaces used for V-Ti ore metalized pellets[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 928-933 (in Chinese).
[20] [20] LYU X D, HUANG R, QIAN X, et al. Thermodynamic calculation on corrosion of electric arc furnace titania slag to different refractory materials[J]. Refractories, 2018, 52(1): 27-30 (in Chinese).
[21] [21] MA S B, YAN W, LIN X L, et al. Corrosion mechanism of ladle slag to lightweight periclase-MA spinel refractories[J]. Journal of the Chinese Ceramic Society, 2018, 46(3): 443-448 (in Chinese).
[22] [22] LI Z Z, XU Y B, WANG Q H, et al. Effect of TiO2 on thermal shock resistance and slag penetration resistance of magnesia[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 602-609 (in Chinese).
[23] [23] BERJONNEAU J, PRIGENT P, POIRIER J. The development of a thermodynamic model for Al2O3-MgO refractory castable corrosion by secondary metallurgy steel ladle slags[J]. Ceramics International, 2009, 35(2): 623-635.
[24] [24] TANG H Y, WU G H, WANG Y, et al. Comparative evaluation investigation of slag corrosion on Al2O3 and MgO-Al2O3 refractories via experiments and thermodynamic simulations[J]. Ceramics International, 2017, 43(18): 16502-16511.
[25] [25] JIANG X Y, HUANG A, GU H Z, et al. Effect of Al2O3 content in CaO-Al2O3-SiO2 slag on corrosion resistance of alumina-magnesia castable[J]. Journal of Iron and Steel Research, 2022, 34(9): 991-998 (in Chinese).
[26] [26] BETSIS K, KOURTIS A, CHATZITHEODORIDIS E, et al. Corrosion of high purity magnesia refractories from iron-rich slags of ferronickel enrichment in OBM converters[J]. Machines Technologies Materials, 2020, 14(4): 177-180.
[27] [27] LI Y H, HAN B Q, HE H X, et al. Interaction of LF slag and ρ-Al2O3 bonded alumina-magnesia castables[J]. Refractories, 2014, 48(5): 359-364 (in Chinese).
[28] [28] GUO W J, ZHU T B, ZHAO X, et al. Improved slag corrosion resistance of MgO-C refractories with calcium magnesium aluminate aggregate and silicon carbide: corrosion behavior and thermodynamic simulation[J]. Journal of the European Ceramic Society, 2024, 44(1): 496-509.
[29] [29] XIANG X. Study on magnesium carbon refractory in ladle for smelting low alkalinity slag[D]. Wuhan: Wuhan University of Science and Technology, 2021 (in Chinese).
[30] [30] WANG W L, XUE L W, ZHANG T S, et al. Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag[J]. Ceramics International, 2019, 45(16): 20664-20673.
[31] [31] YAN W, LI N, FANG X M, et al. Thermochemical model for corundum spinel castable corrosion by molten slag[J]. Journal of Wuhan University of Science and Technology, 2010, 33(5): 543-547 (in Chinese).
[32] [32] PENG W, CHEN Z, YAN W, et al. Advanced lightweight periclase-magnesium aluminate spinel refractories with high mechanical properties and high corrosion resistance[J]. Construction and Building Materials, 2021, 291: 123388.
[33] [33] ZHANG G J, REINMLLER M, KLINGER M, et al. Ash melting behavior and slag infiltration into alumina refractory simulating co-gasification of coal and biomass[J]. Fuel, 2015, 139: 457-465.
[34] [34] LUZ A P, TOMBA M A G, BRAULIO M A L, et al. Thermodynamic evaluation of spinel containing refractory castables corrosion by secondary metallurgy slag[J]. Ceramics International, 2011, 37(4): 1191-1201.
[35] [35] CALVO W A, PENA P, TOMBA M A G. Post-mortem analysis of alumina-magnesia-carbon refractory bricks used in steelmaking ladles[J]. Ceramics International, 2019, 45(1): 185-196.
[36] [36] MUOZ V, CAMELLI S, TOMBA M A G. Slag corrosion of alumina-magnesia-carbon refractory bricks: experimental data and thermodynamic simulation[J]. Ceramics International, 2017, 43(5): 4562-4569.
[37] [37] LUZ A P, BRAULIO M A L, TOMBA M A G, et al. Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations[J]. Ceramics International, 2012, 38(2): 1497-1505.
[38] [38] HAN J S, HEO J H, PARK J H. Interfacial reaction between magnesia refractory and “FeO”-rich slag: formation of magnesiowüstite layer[J]. Ceramics International, 2019, 45(8): 10481-10491.
[39] [39] LUZ A P, LEITE F C, BRITO M A M, et al. Slag conditioning effects on MgO-C refractory corrosion performance[J]. Ceramics International, 2013, 39(7): 7507-7515.
[40] [40] SAGADIN C, LUIDOLD S, WAGNER C, et al. Thermodynamic refractory corrosion model for ferronickel manufacturing[J]. Metallurgical and Materials Transactions B, 2021, 52(2): 1052-1060.
[41] [41] PETERSEN S, HACK K, MONHEIM P, et al. SimuSage-the component library for rapid process modeling and its applications[J]. International Journal of Materials Research, 2007, 98(10): 946-953.
[42] [42] LEE W E, ZHANG S. Melt corrosion of oxide and oxide-carbon refractories[J]. International Materials Reviews, 1999, 44(3): 77-104.
[43] [43] ZOU Y. Study on slag resistance of lightweight Al2O3-MgO castable[D].Wuhan: Wuhan University of Science and Technology, 2017 (in Chinese).
[44] [44] ZOU Y, GU H Z, HUANG A, et al. Effects of aggregate microstructure on slag resistance of lightweight Al2O3-MgO castable[J]. Ceramics International, 2017, 43(18): 16495-16501.
[45] [45] HUANG A, GU H, YANG Z, et al. Approach for modeling slag corrosion of lightweight Al2O3-MgO castables in refining ladle[J]. Ceramic Transactions Series, 2016, 256: 101-111.
[46] [46] LIN Y, YAN B J, WEN Y P, et al. Dissolution behavior of silica in molten CaO-SiO2-Fe2O3-MgO-MnO slag[J]. Journal of the American Ceramic Society, 2022, 105(6): 3774-3785.
[47] [47] HAN J S, KANG J, SHIN J H, et al. Influence of CaF2 in calcium aluminate-based slag on the degradation of magnesia refractory[J]. Ceramics International, 2018, 44(11): 13197-13204.
[48] [48] VAN DYK J C, WAANDERS F B, BENSON S A, et al. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling[J]. Fuel, 2009, 88(1): 67-74.
[49] [49] CHEN Y, PAN W J, JIA B R, et al. Effects of the amphoteric behavior of Al2O3 on the structure and properties of CaO-SiO2-Al2O3 melts by molecular dynamics[J]. Journal of Non-Crystalline Solids, 2021, 552: 120435.
[50] [50] JIANG C H, LI K J, ZHANG J L, et al. Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags: a molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2018, 502: 76-82.
[51] [51] MA S F, LI K J, ZHANG J L, et al. Effect of MnO content on slag structure and properties under different basicity conditions: a molecular dynamics study[J]. Journal of Molecular Liquids, 2021, 336: 116304.
Get Citation
Copy Citation Text
GUO Weijie, ZHU Tianbin, LI Yawei, LIAO Ning, SANG Shaobai, XU Yibiao, YAN Wen. Application of FactSage Thermodynamic Calculation on Slag Corrosion Resistance of Refractories[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 1110
Category:
Received: Sep. 27, 2023
Accepted: --
Published Online: Aug. 2, 2024
The Author Email: Tianbin ZHU (zhutianbin@wust.edu.cn)
CSTR:32186.14.