Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 3, 1110(2024)

Application of FactSage Thermodynamic Calculation on Slag Corrosion Resistance of Refractories

GUO Weijie1,2, ZHU Tianbin1,2、*, LI Yawei1,2, LIAO Ning1,2, SANG Shaobai1,2, XU Yibiao1,2, and YAN Wen1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(51)

    [1] [1] BALE C W, CHARTRAND P, DEGTEROV S A, et al. FactSage thermochemical software and databases[J]. Calphad, 2002, 26(2): 189-228.

    [2] [2] CAO Z M, SONG X Y, QIAO Z Y. Thermodynamic modeling software FactSage and its application[J]. Chinese Journal of Rare Metals, 2008, 32(2): 216-219 (in Chinese).

    [3] [3] BALE C W, BLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases: recent developments[J]. Calphad, 2009, 33(2): 295-311.

    [4] [4] BALE C W, BLISLE E, CHARTRAND P, et al. Reprint of: FactSage thermochemical software and databases, 2010-2016[J]. Calphad, 2016, 55: 1-19.

    [5] [5] JUNG I H, DECTEROV S A, PELTON A D. Critical thermodynamic evaluation and optimization of the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 systems[J]. Journal of Phase Equilibria and Diffusion, 2004, 25(4): 329-345.

    [6] [6] OH M K, PARK J H. Effect of fluorspar on the interfacial reaction between electric arc furnace slag and magnesia refractory: competitive corrosion-protection mechanism of magnesiowüstite layer[J]. Ceramics International, 2021, 47(14): 20387-20398.

    [7] [7] SEOK S H, JUNG S M, LEE Y S, et al. Viscosity of highly basic slags[J]. ISIJ International, 2007, 47(8): 1090-1096.

    [8] [8] ERIKSSON G, PELTON A D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 systems[J]. Metallurgical Transactions B, 1993, 24(5): 807-816.

    [9] [9] ERIKSSON G, HACK K, PETERSEN S. ChemApp-a programmable thermodynamic calculation interface. Werkstoffwoche’96, Symposium 8: Simulation, Modellierung, Informationssysteme, Hirsch J: DGM Informationsgesellschaft Verlag, 1997.

    [10] [10] JUNG I H, VAN ENDE M A. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation[J]. Metallurgical and Materials Transactions B, 2020, 51(5): 1851-1874.

    [11] [11] GEHRE P, ANEZIRIS C G, BEREK H, et al. Corrosion of magnesium aluminate spinel-rich refractories by sulphur-containing slag[J]. Journal of the European Ceramic Society, 2015, 35(5): 1613-1620.

    [12] [12] RAMULT J, WINIEWSKA T K, PROROK R, et al. Fundamental investigations on the high-temperature corrosion of spinel-forming alumina castables by steel slags[J]. Applied Sciences, 2022, 12(2): 704.

    [13] [13] JASTRZBSKA I, LUDWIG M, NIEEK E, et al. Corrosion study of novel Cr-free alumina-spinel refractory material dedicated to the copper industry[J]. Journal of the European Ceramic Society, 2022, 42(15): 7311-7327.

    [14] [14] YEHOROV A, MA G J, VOLKOVA O. Interaction between MgO-C-bricks and ladle slag with a 1∶1 CaO/Al2O3 ratio and varying SiO2 content[J]. Ceramics International, 2021, 47(8): 11677-11686.

    [15] [15] LIU G F, LI Y W, ZHU T B, et al. Influence of the atmosphere on the mechanical properties and slag resistance of magnesia-chrome bricks[J]. Ceramics International, 2020, 46(8): 11225-11231.

    [16] [16] WANG G Y, ZHAO H Z, HUANG R Q, et al. Corrosion mechanism of AOD slag on magnesia calcium refractories[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1496-1505 (in Chinese).

    [17] [17] CHENG Y Q, ZHAO H Z, PAN L T, et al. Performance and corrosion mechanism of molten iron ladle Al2O3-SiC-C lining bricks for stainless steel smelting[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 329-337 (in Chinese).

    [18] [18] JIN S L, LI Y W, LI Y B, et al. Corrosion simulation of Pansteel blast furnace TiO2-containing slag to refractory aggregates in iron runner[J]. Refractories, 2009, 43(2): 145-148 (in Chinese).

    [19] [19] SANG S B, LI Y W, ZHU T B, et al. Discussion on lining materials of melting and separation furnaces used for V-Ti ore metalized pellets[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 928-933 (in Chinese).

    [20] [20] LYU X D, HUANG R, QIAN X, et al. Thermodynamic calculation on corrosion of electric arc furnace titania slag to different refractory materials[J]. Refractories, 2018, 52(1): 27-30 (in Chinese).

    [21] [21] MA S B, YAN W, LIN X L, et al. Corrosion mechanism of ladle slag to lightweight periclase-MA spinel refractories[J]. Journal of the Chinese Ceramic Society, 2018, 46(3): 443-448 (in Chinese).

    [22] [22] LI Z Z, XU Y B, WANG Q H, et al. Effect of TiO2 on thermal shock resistance and slag penetration resistance of magnesia[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 602-609 (in Chinese).

    [23] [23] BERJONNEAU J, PRIGENT P, POIRIER J. The development of a thermodynamic model for Al2O3-MgO refractory castable corrosion by secondary metallurgy steel ladle slags[J]. Ceramics International, 2009, 35(2): 623-635.

    [24] [24] TANG H Y, WU G H, WANG Y, et al. Comparative evaluation investigation of slag corrosion on Al2O3 and MgO-Al2O3 refractories via experiments and thermodynamic simulations[J]. Ceramics International, 2017, 43(18): 16502-16511.

    [25] [25] JIANG X Y, HUANG A, GU H Z, et al. Effect of Al2O3 content in CaO-Al2O3-SiO2 slag on corrosion resistance of alumina-magnesia castable[J]. Journal of Iron and Steel Research, 2022, 34(9): 991-998 (in Chinese).

    [26] [26] BETSIS K, KOURTIS A, CHATZITHEODORIDIS E, et al. Corrosion of high purity magnesia refractories from iron-rich slags of ferronickel enrichment in OBM converters[J]. Machines Technologies Materials, 2020, 14(4): 177-180.

    [27] [27] LI Y H, HAN B Q, HE H X, et al. Interaction of LF slag and ρ-Al2O3 bonded alumina-magnesia castables[J]. Refractories, 2014, 48(5): 359-364 (in Chinese).

    [28] [28] GUO W J, ZHU T B, ZHAO X, et al. Improved slag corrosion resistance of MgO-C refractories with calcium magnesium aluminate aggregate and silicon carbide: corrosion behavior and thermodynamic simulation[J]. Journal of the European Ceramic Society, 2024, 44(1): 496-509.

    [29] [29] XIANG X. Study on magnesium carbon refractory in ladle for smelting low alkalinity slag[D]. Wuhan: Wuhan University of Science and Technology, 2021 (in Chinese).

    [30] [30] WANG W L, XUE L W, ZHANG T S, et al. Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag[J]. Ceramics International, 2019, 45(16): 20664-20673.

    [31] [31] YAN W, LI N, FANG X M, et al. Thermochemical model for corundum spinel castable corrosion by molten slag[J]. Journal of Wuhan University of Science and Technology, 2010, 33(5): 543-547 (in Chinese).

    [32] [32] PENG W, CHEN Z, YAN W, et al. Advanced lightweight periclase-magnesium aluminate spinel refractories with high mechanical properties and high corrosion resistance[J]. Construction and Building Materials, 2021, 291: 123388.

    [33] [33] ZHANG G J, REINMLLER M, KLINGER M, et al. Ash melting behavior and slag infiltration into alumina refractory simulating co-gasification of coal and biomass[J]. Fuel, 2015, 139: 457-465.

    [34] [34] LUZ A P, TOMBA M A G, BRAULIO M A L, et al. Thermodynamic evaluation of spinel containing refractory castables corrosion by secondary metallurgy slag[J]. Ceramics International, 2011, 37(4): 1191-1201.

    [35] [35] CALVO W A, PENA P, TOMBA M A G. Post-mortem analysis of alumina-magnesia-carbon refractory bricks used in steelmaking ladles[J]. Ceramics International, 2019, 45(1): 185-196.

    [36] [36] MUOZ V, CAMELLI S, TOMBA M A G. Slag corrosion of alumina-magnesia-carbon refractory bricks: experimental data and thermodynamic simulation[J]. Ceramics International, 2017, 43(5): 4562-4569.

    [37] [37] LUZ A P, BRAULIO M A L, TOMBA M A G, et al. Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations[J]. Ceramics International, 2012, 38(2): 1497-1505.

    [38] [38] HAN J S, HEO J H, PARK J H. Interfacial reaction between magnesia refractory and “FeO”-rich slag: formation of magnesiowüstite layer[J]. Ceramics International, 2019, 45(8): 10481-10491.

    [39] [39] LUZ A P, LEITE F C, BRITO M A M, et al. Slag conditioning effects on MgO-C refractory corrosion performance[J]. Ceramics International, 2013, 39(7): 7507-7515.

    [40] [40] SAGADIN C, LUIDOLD S, WAGNER C, et al. Thermodynamic refractory corrosion model for ferronickel manufacturing[J]. Metallurgical and Materials Transactions B, 2021, 52(2): 1052-1060.

    [41] [41] PETERSEN S, HACK K, MONHEIM P, et al. SimuSage-the component library for rapid process modeling and its applications[J]. International Journal of Materials Research, 2007, 98(10): 946-953.

    [42] [42] LEE W E, ZHANG S. Melt corrosion of oxide and oxide-carbon refractories[J]. International Materials Reviews, 1999, 44(3): 77-104.

    [43] [43] ZOU Y. Study on slag resistance of lightweight Al2O3-MgO castable[D].Wuhan: Wuhan University of Science and Technology, 2017 (in Chinese).

    [44] [44] ZOU Y, GU H Z, HUANG A, et al. Effects of aggregate microstructure on slag resistance of lightweight Al2O3-MgO castable[J]. Ceramics International, 2017, 43(18): 16495-16501.

    [45] [45] HUANG A, GU H, YANG Z, et al. Approach for modeling slag corrosion of lightweight Al2O3-MgO castables in refining ladle[J]. Ceramic Transactions Series, 2016, 256: 101-111.

    [46] [46] LIN Y, YAN B J, WEN Y P, et al. Dissolution behavior of silica in molten CaO-SiO2-Fe2O3-MgO-MnO slag[J]. Journal of the American Ceramic Society, 2022, 105(6): 3774-3785.

    [47] [47] HAN J S, KANG J, SHIN J H, et al. Influence of CaF2 in calcium aluminate-based slag on the degradation of magnesia refractory[J]. Ceramics International, 2018, 44(11): 13197-13204.

    [48] [48] VAN DYK J C, WAANDERS F B, BENSON S A, et al. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling[J]. Fuel, 2009, 88(1): 67-74.

    [49] [49] CHEN Y, PAN W J, JIA B R, et al. Effects of the amphoteric behavior of Al2O3 on the structure and properties of CaO-SiO2-Al2O3 melts by molecular dynamics[J]. Journal of Non-Crystalline Solids, 2021, 552: 120435.

    [50] [50] JIANG C H, LI K J, ZHANG J L, et al. Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags: a molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2018, 502: 76-82.

    [51] [51] MA S F, LI K J, ZHANG J L, et al. Effect of MnO content on slag structure and properties under different basicity conditions: a molecular dynamics study[J]. Journal of Molecular Liquids, 2021, 336: 116304.

    Tools

    Get Citation

    Copy Citation Text

    GUO Weijie, ZHU Tianbin, LI Yawei, LIAO Ning, SANG Shaobai, XU Yibiao, YAN Wen. Application of FactSage Thermodynamic Calculation on Slag Corrosion Resistance of Refractories[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 1110

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 27, 2023

    Accepted: --

    Published Online: Aug. 2, 2024

    The Author Email: Tianbin ZHU (zhutianbin@wust.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics