Journal of Innovative Optical Health Sciences, Volume. 10, Issue 2, 1641004(2017)

Effect of spatial spectrum overlap on Fourier ptychographic microscopy

Qiulan Liu1... Cuifang Kuang1,2,*, Yue Fang1, Peng Xiu1, Yicheng Li1, Ruixin Wen1, and Xu Liu12 |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, P. R. China
  • show less
    References(27)

    [1] [1] Rittweger E., Han K. Y., Irvine S. E., Eggeling C. and Hell S. W., STED microscopy reveals crystal colour centres with nanometric resolution, Nat. Photon. 3 (2009) 144–147. ISI,

    [2] [2] Betzig E., Patterson G. H., Sougrat R., Lindwasser O. W., Olenych S., Bonifacino J. S., Davidson M. W., Lippincott-Schwartz J. and Hess H. F., Imaging intracellular fluorescent proteins at nanometer resolution, Science 313 (2006) 1642–1645. ISI,

    [3] [3] Rust M. J., Bates M. and Zhuang X., Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3 (2006) 793–796. ISI,

    [4] [4] Mudry E., Belkebir K, Girard J., Savatier J., Le Moal E., Nicoletti C., Allain M. and Sentenac A., Structured illumination microscopy using unknown speckle patterns, Nat. Photon. 6 (2012) 312–315. ISI,

    [5] [5] Turpin T. M., Gesell L. H., Lapides J. and Price C. H., International Society for Optics and Photonics, (1995).

    [6] [6] Hillman T. R., Gutzler T., Alexandrov S. A. and Sampson D. D., High-resolution, wide-field object reconstruction with synthetic aperture fourier holographic optical microscopy, Opt. Express 17 (2009) 7873–7892. ISI,

    [7] [7] Granero L., Micó V., Zalevsky Z. and García J., Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information, Appl. Opt. 49 (2010) 845–857. ISI,

    [8] [8] Kim M., Choi Y., Fang-Yen C., Sung Y., Dasari R. R., Feld M. S. and Choi W., High-speed synthetic aperture microscopy for live cell imaging, Opt. Lett. 36 (2011) 148–150. ISI,

    [9] [9] Curlander J. C. and McDonough R. N., Synthetic Aperture Radar (John Wiley & Sons, New York, 1991).

    [10] [10] Cotte Y., Toy F., Jourdain P., Pavillon N., Boss D., Magistretti P., Marquet P. and Depeursinge C., Marker-free phase nanoscopy, Nat. Photon. 7 (2013) 113–117. ISI,

    [11] [11] Schwarz C. J., Kuznetsova Y. and Brueck S., Imaging interferometric microscopy, Opt. Lett. 28 (2003) 1424–1426. ISI,

    [12] [12] Paturzo M. and Ferraro P., Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography, Opt. Lett. 34 (2009) 3650–3652. ISI,

    [13] [13] Paturzo M., Merola F., Grilli S., Nicola De S., Finizio A. and Ferraro P., Super-resolution in digital holography by a two-dimensional dynamic phase grating, Opt. Express 16 (2008) 17107–17118. ISI,

    [14] [14] Lee D. J. and Weiner A. M., Optical phase imaging using a synthetic aperture phase retrieval technique, Opt. Express 22 (2014) 9380–9394. ISI,

    [15] [15] Zheng G., Horstmeyer R. and Yang C., Wide-field, high-resolution Fourier ptychographic microscopy, Nat. Photon 7 (2013) 739–745. ISI,

    [16] [16] Ou X., Horstmeyer R., Yang C. and Zheng G., Quantitative phase imaging via Fourier ptychographic microscopy, Opt.Lett. 38 (2013) 4845–4848. ISI,

    [17] [17] Dong S., Horstmeyer R., Shiradkar R., Guo K., Ou X., Bian Z., Xin H. and Zheng G., Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging, Opt. Express 22 (2014) 13586–13599. ISI,

    [18] [18] Dong S., Shiradkar R., Nanda P. and Zheng G., Spectral multiplexing and coherent-state decomposition in fourier ptychographic imaging, Biomed. Opt. Express 5 (2014) 1757–1767. ISI,

    [19] [19] Zheng G., Breakthroughs in photonics 2013: Fourier ptychographic imaging, IEEE Photon. J. 6 (2014) 1–7. ISI,

    [20] [20] Zheng G., Ou X., Horstmeyer R., Chung J. and Yang C., Fourier ptychographic microscopy: A gigapixel superscope for biomedicine, Opt. Photon. News 25 (2014) 26–33.

    [21] [21] Williams A., Chung J., Ou X., Zheng G., Rawal S., Ao Z., Datar R., Yang C. and Cote R., Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis, J. Biomed. Opt. 19 (2014) 066007. ISI,

    [22] [22] Gerchberg R. W., A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35 (1972) 237. ISI,

    [23] [23] Den Dekker A. and den Bos A. Van, Resolution: a survey, J.-Opt. Soc. Am. A 14 (1997) 547–557.

    [24] [24] Goodman J. W. and Gustafson S. C., Introduction to fourier optics, Opt. Eng. 35 (1996) 1513. ISI,

    [25] [25] Gao P., Pedrini G. and Osten W., Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy, Opt. Lett. 38 (2013) 1328–1330. ISI,

    [26] [26] Hao X., Kuang C., Li Y. and Liu X., Evanescent-wave-induced frequency shift for optical superresolution imaging, Opt. Lett. 38 (2013) 2455–2458. ISI,

    [27] [27] Maier S. A., Plasmonics: Fundamentals and Applications (Springer Science & Business Media, Berlin, 2007).

    Tools

    Get Citation

    Copy Citation Text

    Qiulan Liu, Cuifang Kuang, Yue Fang, Peng Xiu, Yicheng Li, Ruixin Wen, Xu Liu. Effect of spatial spectrum overlap on Fourier ptychographic microscopy[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1641004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 28, 2016

    Accepted: Apr. 18, 2016

    Published Online: Dec. 27, 2018

    The Author Email: Kuang Cuifang (cfkuang@zju.edu.cn)

    DOI:10.1142/s1793545816410042

    Topics