Optics and Precision Engineering, Volume. 32, Issue 20, 3047(2024)
End-to-end deblurring model for microscopic vision
[1] D SAGE, L DONATI, F SOULEZ et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods, 115, 28-41(2017).
[2] F LIN, C H JIN. An improved Wiener deconvolution filter for high-resolution electron microscopy images. Micron, 50, 1-6(2013).
[3] M N ZHANG, Y Y FANG, G X NI et al. Pixel screening based intermediate correction for blind deblurring, 1-9(2022).
[4] Z H XU, H S CHEN, Z H LI. Fast blind deconvolution using a deeper sparse patch-wise maximum gradient prior. Signal Processing: Image Communication, 90, 116050(2021).
[5] A LEVIN, Y WEISS, F DURAND et al. Understanding and evaluating blind deconvolution algorithms, 1964-1971(2009).
[6] R FERGUS, B SINGH, A HERTZMANN et al. Removing camera shake from a single photograph. ACM Transactions on Graphics, 25, 787-794(2006).
[7] C LEDIG, L THEIS, F HUSZÁR et al. Photo-realistic single image super-resolution using a generative adversarial network, 105-114(2017).
[8] F Z YANG, H YANG, J L FU et al. Learning texture transformer network for image super-resolution, 5790-5799(2020).
[9] Z S LU, J C LI, H LIU et al. Transformer for single image super-resolution, 456-465(2022).
[10] Y LIU, X CHEN, H PENG et al. Multi-focus image fusion with a deep convolutional neural network. Information Fusion, 36, 191-207(2017).
[11] P WU, L M JIANG, Z HUA et al. Multi-focus image fusion: transformer and shallow feature attention matters. Displays, 76, 102353(2023).
[12] C WANG, Z Y ZHAO, Q Q REN et al. A novel multi-focus image fusion by combining simplified very deep convolutional networks and patch-based sequential reconstruction strategy. Applied Soft Computing, 91, 106253(2020).
[13] 赵宇轩. 单图超分辨光片显微成像技术及其在活细胞中的应用研究(2022).
Y X ZHAO.
[14] 朱威铭. 基于生成对抗学习的煤岩显微图像超分辨率重建(2023).
W M ZHU.
[15] 陈浩. 基于视觉特征的显微图像预处理研究(2020).
H CHEN. Microscopic Image Preprocessing Based on Visual Features(2020).
[16] 徐征, 陈聿夫, 孙谦. 机器视觉精密测量中的显微光学聚焦. 光学 精密工程, 24, 2095-2100(2016).
Z XU, Y F CHEN, Q SUN et al. Auto-focusing in optical microscopy for machine-vision-based precise measurement. Opt. Precision Eng., 24, 2095-2100(2016).
[17] L P ZHOU, Z J SUN, Q ZHANG. Auto-focusing and control of micro-vision system. Opt. Precision Eng., 21, 807-812(2013).
周丽平, 孙志峻, 张泉. 显微视觉系统的自动聚焦及控制. 光学 精密工程, 21, 807-812(2013).
[18] A MAIER. Efficient focus assessment for a computer vision-based Vickers hardness measurement system. Journal of Electronic Imaging, 21(2012).
[19] J SI, X XIAO, J LI et al. Super-resolution reconstruction algorithm with multi-frame defocused images based on generative adversarial network. Computer Engineering, 47, 266-273(2021).
斯捷, 肖雄, 李泾. 基于生成对抗网络的多幅离焦图像超分辨率重建算法. 计算机工程, 47, 266-273(2021).
[20] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[22] J KIM, J K LEE, K M LEE. Accurate image super-resolution using very deep convolutional networks, 1646-1654(2016).
[23] C DONG, C C LOY, K M HE et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
Get Citation
Copy Citation Text
Zheng XU, Jiaheng HE, Yanqi WANG, Xiaodong WANG, Tongqun REN. End-to-end deblurring model for microscopic vision[J]. Optics and Precision Engineering, 2024, 32(20): 3047
Category:
Received: Mar. 25, 2024
Accepted: --
Published Online: Jan. 10, 2025
The Author Email: WANG Xiaodong (xdwang@dlut.edu.cn)