Acta Optica Sinica, Volume. 41, Issue 1, 0127001(2021)
High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics
[1] Hernández G[M]. Fabry-Perot interferometers(1988).
[3] Wei T, Han Y K, Tsai H L et al. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser[J]. Optics Letters, 33, 536-538(2008).
[4] Wei F, Yang F, Zhang X et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity[J]. Optics Express, 24, 17406-17415(2016).
[5] Guo Y S, Jiang S, Chen X et al. Using a Fabry-Perot cavity to augment the enhancement factor for surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C, 122, 14865-14871(2018).
[8] Bitarafan M H. DeCorby R G. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information[J]. Sensors, 17, 1748(2017).
[14] Lawall J R. Fabry-Perot metrology for displacements up to 50 mm[J]. Journal of the Optical Society of America A, 22, 2786-2798(2005).
[19] Raimond J M, Haroche S[M]. Exploring the quantum: atoms, cavities, and photons, 231-278(2006).
[22] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).
[23] Thompson R J, Rempe G, Kimble H J et al. Observation of normal-mode splitting for an atom in an optical cavity[J]. Physical Review Letters, 68, 1132-1135(1992).
[24] Mckeever J, Boca A, Boozer A D et al. Deterministic generation of single photons from one atom trapped in a cavity[J]. Science, 303, 1992-1994(2004).
[27] Weber B, Specht H P, Müller T et al. Photon-photon entanglement with a single trapped atom[J]. Physical Review Letters, 102, 030501(2009).
[30] Chen Z L, Bohnet J G, Sankar S R et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting[J]. Physical Review Letters, 106, 133601(2011).
[31] Rempe G, Thompson R J, Kimble H J et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 17, 363-365(1992).
[33] McKeever J, Boca A, Boozer A D et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 425, 268-271(2003).
[36] Maunz P, Puppe T, Schuster I et al. Cavity cooling of a single atom[J]. Nature, 428, 50-52(2004).
[38] Kubanek A, Koch M, Sames C et al. Photon-by-photon feedback control of a single-atom trajectory[J]. Nature, 462, 898-901(2009).
[39] Ourjoumtsev A, Kubanek A, Koch M et al. Observation of squeezed light from one atom excited with two photons[J]. Nature, 474, 623-626(2011).
[40] Hamsen C, Tolazzi K N, Wilk T et al. Strong coupling between photons of two light fields mediated by one atom[J]. Nature Physics, 14, 885-889(2018).
[47] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).
[49] Cui J M, Zhou K, Zhao M S et al. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings[J]. Applied Physics Letters, 112, 171105(2018).
[51] Dong C H, Shen Z, Zou C L et al. Brillouin-scattering-induced transparency and non-reciprocal light storage[J]. Nature Communications, 6, 6193(2015).
[52] Shen Z, Zhang Y L, Chen Y et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 10, 657-661(2016).
[58] Lin J T, Yao N, Hao Z Z et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 122, 173903(2019).
[62] Li L P, Liu T, Li G et al. Measurement of ultra-low losses in optical supercavity[J]. Acta Physica Sinica, 53, 1401-1405(2004).
[63] Li G, Zhang Y, Li Y et al. Precision measurement of ultralow losses of an asymmetric optical microcavity[J]. Applied Optics, 45, 7628-7631(2006).
[64] Zhang P F, Guo Y Q, Li Z H et al. Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted TEM10 cavity mode[J]. Physical Review A, 83, 031804(2011).
[66] Yang P F, He H, Wang Z H et al. Cavity enhanced measurement of trap frequency in an optical dipole trap[J]. Chinese Physics B, 28, 043701(2019).
[67] Yang P F, Xia X W, He H et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 123, 233604(2019).
[69] Du J J, Li W F, Wen R J et al. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity[J]. Applied Physics Letters, 103, 083117(2013).
[70] Li Z G, Zhang Y C, Li G et al. -12-23[P]. accurately measuring ultra-high reflectivity lens: CN100573082C.(2009).
[72] Zhang P F, Li G. -11-21[P]. Zhang T C. Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity: CN102427200A.(2012).
[75] Du J J, Li G, Li W F, locking method:CN102520516B[P] et al. -06-26(2013).
[76] Li G, Zhang P F. -06-14[P]. Zhang T C. An optical reference cavity with self-compensation for temperature drift: CN109888609.(2019).
[78] Phillips W D. Nobel Lecture: laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 70, 721(1998).
[79] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 6, 2023-2045(1989).
[80] Li G, Li L P, Du Z J et al. Ultra-low mean-photon-number measurement with balanced optical heterodyne detection[J]. Chinese Physics Letters, 21, 671-674(2004).
[88] Kato S, Német N, Senga K et al. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics[J]. Nature Communications, 10, 1160(2019).
[89] Okada M, Serikawa T, Dannatt J et al. Extending the piezoelectric transducer bandwidth of an optical interferometer by suppressing resonance using a high dimensional IIR filter implemented on an FPGA[J]. Review of Scientific Instruments, 91, 055102(2020).
[93] Brown K R, Dani K M. Stamper-Kurn D M, et al. Deterministic optical Fock-state generation[J]. Physical Review A, 67, 043818(2003).
[94] Yang R C, Li G, Li J et al. Atomic N00N state generation in distant cavities by virtual excitations[J]. Chinese Physics B, 20, 060302(2011).
[98] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).
[99] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators[J]. Optics Letters, 21, 453-455(1996).
[104] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).
[105] Vu kovi J, Lon ar M, Mabuchi H et al. Design of photonic crystal microcavities for cavity QED[J]. Physical Review E, 65, 016608(2001).
[110] Song L J, Zhang P F, Li G et al. -03-25[P]. method for nondestructively measuring microsphere diameter uniformity: CN110333170A.(2020).
Get Citation
Copy Citation Text
Tiancai Zhang, Wei Wu, Pengfei Yang, Gang Li, Pengfei Zhang. High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics[J]. Acta Optica Sinica, 2021, 41(1): 0127001
Category: Quantum Optics
Received: Aug. 20, 2020
Accepted: Sep. 15, 2020
Published Online: Feb. 23, 2021
The Author Email: Zhang Tiancai (tczhang@sxu.edu.cn), Li Gang (gangli@sxu.edu.cn)