Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 533(2022)
Review on Modeling of Hydration Process and Microstructure Development of Cementitious Materials
[2] [2] MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance: integrated material and structural mechanics[J]. J Adv Concr Technol, 2003, 1(2): 91-126.
[3] [3] KONDO R, UEDA S. Kinetics and mechanism of the hydration of cements[C]. 5th International Symposium on the Chemistry of Cement, Tokyo, Japan, 1968: 230-255.
[4] [4] JENNINGS H M, JOHNSON S K. Simulation of microstructure development during the hydration of a cement compound[J]. J Am Ceram Soc, 1986, 69(11): 790-795.
[5] [5] LE N L B, STROEVEN M, SLUYS L J, et al. A novel numerical multi-component model for simulating hydration of cement[J]. Comput Mater Sci, 2013, 78: 12-21.
[6] [6] BREUGEL K V. Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory[J]. Cem Concr Res, 1995, 25(2): 319-331.
[7] [7] BREUGEL K V. Numerical simulation of hydration and microstructural development in hardening cement-based materials (II) Applications[J]. Cem Concr Res, 1995, 25(3): 522-530.
[9] [9] BENTZ D P. Three-dimensional computer simulation of cement hydration and microstructure development[J]. J Am Ceram Soc, 1997, 80(1): 3-21.
[10] [10] POMMERSHEIM J M, CLIFTON J R. Mathematical modeling of tricalcium silicate hydration[J]. Cem Concr Res, 1979, 9(6): 765-770.
[11] [11] POMMERSHEIM J M, CLIFTON J R. Mathematical modeling of tricalcium silicate hydration. II. Hydration sub-models and the effect of model parameters[J]. Cem Concr Res, 1982, 12(6): 765-772.
[12] [12] PARROT L J, KILLOH D C. Prediction of cement hydration[J]. Br Ceram Proc, 1984, 35: 41-53.
[14] [14] OUZIA A, SCRIVENER K. The needle model: A new model for the main hydration peak of alite[J]. Cem Concr Res, 2019, 115: 339-360.
[15] [15] LIU Z Y, CHEN W W, ZHANG Y S, et al. A three-dimensional multi-scale method to simulate the ion transport behavior of cement-based materials[J]. Constr Build Mater, 2016, 120: 494-503.
[16] [16] BENTZ D P. Modeling the influence of limestone filler on cement hydration using CEMHYD3D[J]. Cem Concr Compos, 2006, 28(2): 124-129.
[17] [17] GARBOCZI E J, BENTZ D P. The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model[J]. Cem Concr Res, 2001, 31: 1501-1514.
[18] [18] BENTZ D P, MIZELL S, SATTERFIELD S, et al. The visible cement data set[J]. J Res National Instit Standards Technol, 2002, 107(2): 137-148.
[19] [19] FENG P, GARBOCZI E J, MIAO C W, et al. Microstructural origins of cement paste degradation by external sulfate attack[J]. Constr Build Mater, 2015, 96: 391-403.
[20] [20] BULLARD J W, LOTHENBACH B, STUTZMAN P E, et al. Coupling thermodynamic and digital image models to simulate hydration and microstructure development of portland cement pastes[J]. J Mater Res, 2011, 26(4): 609-622.
[21] [21] BULLARD J W, ENJOLRAS E, GEORGE W L. A parallel reaction- transport model applied to cement hydration and microstructure development[J]. Model Simul Mater Sci Eng, 2010, 18: 025007.
[22] [22] XU W X, CHEN H S. Microstructural characterization of fresh cement paste via random packing of ellipsoidal cement particles[J]. Mater Charact, 2012, 66: 16-23.
[23] [23] XU W X, CHEN H S. Microstructural modelling of cement-based materials via random packing of three-dimensional ellipsoidal particles[J]. Procedia Eng, 2012, 27: 332-340.
[24] [24] XU W X, CHEN H S. Numerical investigation of effect of particle shape and particle size distribution on fresh cement paste microstructure via random sequential packing of dodecahedral cement particles[J]. Comput Struct, 2013, 114/115: 35-45.
[25] [25] ZHU Z G, XU W X, CHEN H S, et al. Diffusivity of cement paste via a continuum-based microstructure and hydration model: Influence of cement grain shape[J]. Cem Concr Compos, 2021, 118: 103920.
[27] [27] LIU C, HUANG R, ZHANG Y S, et al. Modelling of irregular-shaped cement particles and microstructural development of Portland cement[J]. Constr Build Mater, 2018, 168: 362-378.
[28] [28] HOLMES N, KELLIHER D, TYRER M. Simulating cement hydration using HYDCEM[J]. Constr Build Mater, 2020, 239: 117811.
[29] [29] ZHANG M Z. Pore-scale modelling of relative permeability of cementitious materials using X-ray computed microtomography images[J]. Cem Concr Res, 2017, 95: 18-29.
[31] [31] HU C L, GAO Y Y, CHEN B M, et al. Estimation of the poroelastic properties of calcium-silicate-hydrate (C-S-H) gel[J]. Mater Des, 2016, 92: 107-113.
[32] [32] JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cem Concr Res, 2000, 30(1): 101-116.
[33] [33] JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-II[J]. Cem Concr Res, 2008, 38(3): 275-289. 2009.
[34] [34] LIU L, WANG X C, CHEN H S, et al. Numerical modeling of drying shrinkage deformation of cement-based composites by coupling multiscale structure model with 3D lattice analyses[J]. Comput Struct, 2017, 178: 88-104.
[35] [35] LIU L, WANG X C, CHEN H S, et al. Microstructure-based modelling of drying shrinkage and microcracking of cement paste at high relative humidity[J]. Constr Build Mater, 2016, 126: 410-425.
[36] [36] ETZOLD M A, MCDONALD P J, ROUTH A F. Growth of sheets in 3D confinements-a model for the C-S-H meso structure[J]. Cem Concr Res, 2014, 63: 137-142.
[37] [37] YU Z C, ZHOU A, LAU D. Mesoscopic packing of disk-like building blocks in calcium silicate hydrate[J]. Sci Rep, 2016, 6: 36967.
[38] [38] DO Q H, BISHNOI S, SCRIVENER K L. Numerical simulation of porosity in cements[J]. Transp Porous Med, 2013, 99: 101-117.
[39] [39] SHAHSAVARI R, BUEHLER M J, PELLENQ J M, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite[J]. J Am Ceram Soc, 2009, 92(10): 2323-2330.
[40] [40] PELLENQ R J, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[C]. Proceedings of the National Academy of Sciences of the United States of America, USA, 2009: 16102-16107.
[42] [42] ZHANG P, HOU D S, LIU Q, et al. Water and chloride ions migration in porous cementitious materials: An experimental and molecular dynamics investigation[J]. Cem Concr Res, 2017, 102: 161-174.
[43] [43] ZHANG L N, CHENG X, HOU D S, et al. Hydration for the alite mineral: Morphology evolution, reaction mechanism and the compositional influences[J]. Constr Build Mater, 2017, 155: 413-426.
[44] [44] LIU L C, JARAMILLO-BOTERO A, GODDARD W A, et al. Development of a ReaxFF force field for ettringite and study of its mechanical failure models from reactive dynamics simulations[J]. J Phys Chem A, 2012, 116: 3918-3925.
[45] [45] HONORIO T, GUERRA P, BOURDOT A. Molecular simulation of the structure and elastic properties of ettringite and monosulfoaluminate[J]. Cem Concr Res, 2020, 135: 106126.
[47] [47] MOHAMED A R, ELSALAMAWY M, RAGAB M. Modeling the influence of limestone addition on cement hydration[J]. Alex Eng J, 2015, 54(1): 1-5.
[48] [48] WANG X Y. Kinetic hydration heat modeling for high-performance concrete containing limestone powder[J]. Adv Mater Sci Eng, 2017, 2017: 1-11.
[49] [49] WANG X Y. Modeling of hydration, compressive strength, and carbonation of Portland-limestone cement (PLC) concrete[J]. Materials. 2017, 10(1): 115-131.
[50] [50] Nguyen V T. Rice husk ash as a mineral admixture for ultra high performance concrete[D]. Delft: Delft University of Technology, 2011.
[52] [52] PARK K B, KWON S J, WANG X Y. Analysis of the effects of rice husk ash on the hydration of cementitious materials[J]. Constr Build Mater, 2016, 105: 196-205.
[53] [53] LE N L B. Micro-level porosimetry of virtual cementitious materials-Structural impact on mechanical and durability evolution[D]. Delft: Delft University of Technology, 2015.
[54] [54] PAPADAKIS V G. Experimental investigation and theoretical modeling of silica fume activity in concrete[J]. Cem Concr Res, 1999, 29: 79-86.
[56] [56] WANG X Y. Properties prediction of ultra high performance concrete using blended cement hydration model[J]. Constr Build Mater, 2014, 64: 1-10.
[57] [57] LIU C, WANG F Z, ZHANG M Z. Modelling of 3D microstructure and effective diffusivity of fly ash blended cement paste[J]. Cem Concr Compos, 2020, 110: 103586.
[58] [58] WANG X Y, LEE H S. Modeling the hydration of concrete incorporating fly ash or slag[J]. Cem Concr Res, 2010, 40(7): 984-996.
[59] [59] CHEN W, BROUWERS H J H, SHUI Z H. Three-dimensional computer modeling of slag cement hydration[J]. J Mater Sci, 2007, 42: 9595-9610.
[60] [60] ZALZALE M, MCDONALD P J, SCRIVENER K L. A 3D lattice Boltzmann effective media study: understanding the role of C-S-H and water saturation on the permeability of cement paste[J]. Model Simul Mater Sci Eng, 2013, 21: 085016.
[61] [61] LI K, STROEVEN M, STROEVEN P, et al. Investigation of liquid water and gas permeability of partially saturated cement paste by DEM approach[J]. Cem Concr Res, 2016, 83: 104-113.
[62] [62] LI K, STROEVEN M, STROEVEN P, et al. Effects of technological parameters on permeability estimation of partially saturated cement paste by a DEM approach[J]. Cem Concr Compos, 2017, 84: 222-231.
[63] [63] LI K, STROEVEN P, STROEVEN M, et al. Estimating permeability of cement paste using pore characteristics obtained from DEM-based modelling[J]. Constr Build Mater, 2016, 126: 740-746.
[64] [64] GARBOCZI E J, BENTZ D P. Computer simulation of the diffusivity of cement-based materials[J]. J Mater Sci, 1992, 27(8): 2083-2092.
[65] [65] LIU L, SUN W, YE G, et al. Estimation of the ionic diffusivity of virtual cement paste by random walk algorithm[J]. Constr Build Mater, 2012, 28(1): 405-413.
[66] [66] LIU L, CHEN H S, SUN W, et al. Microstructure-based modeling of the diffusivity of cement paste with micro-cracks[J]. Constr Build Mater, 2013, 38(2): 1107-1116.
[67] [67] ZHANG M Z, YE G, BREUGEL K V. Modeling of ionic diffusivity in non-saturated cement-based materials using lattice Boltzmann method[J]. Cem Concr Res, 2012, 42(11): 1524-1533.
[68] [68] PATEL R A, PERKO J, JACQUES D, et al. Effective diffusivity of cement pastes from virtual microstructures: Role of gel porosity and capillary pore percolation[J]. Constr Build Mater, 2018, 165: 833-845.
[69] [69] LIU L, TAO G H, CHEN H S, et al. Shape effect of cement particles on the ionic diffusivity of hardened cement paste-a three-dimensional numerical investigation[J]. Constr Build Mater, 2020, 250: 118736.
[70] [70] LIU C, QIAN C, QIAN R S, et al. Numerical prediction of effective diffusivity in hardened cement paste between aggregates using different shapes of cement powder[J]. Constr Build Mater, 2019, 223: 806-816.
[71] [71] LI X S, SHUI Z H, GAO X, et al. Hydration implanted reactive transport modelling in saturated cement-based materials[J]. Constr Build Mater, 2021, 275: 122185.
[72] [72] FENG G L, LI L Y, KIM B, et al. Multiphase modelling of ionic transport in cementitious materials with surface charges[J]. Comp Mater Sci, 2016, 111: 339-349.
[74] [74] ZHANG M Z, JIVKOV A P. Micromechanical modelling of deformation and fracture of hydrating cement paste using X-ray computed tomography characterisation[J]. Compos Pt B-Eng, 2016, 88: 64-72.
Get Citation
Copy Citation Text
LI Kai, ZHAO Wen, SHI Caijun. Review on Modeling of Hydration Process and Microstructure Development of Cementitious Materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 533
Category:
Received: May. 31, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: Kai LI (kaili@hnu.edu.cn)
CSTR:32186.14.