Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3806(2024)

Preparation and Optical Properties of High-Entropy Spinel-type (Li,Mg,Al,Zn,Ga)3O4 Transparent Ceramics

ZHANG Chaojie1...2, TU Ghuangsheng1, JING Zhengyang1, TU Bingtian1,2, and WANG Hao12 |Show fewer author(s)
Author Affiliations
  • 1State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 2Hubei Longzhong Laboratory, Xiangyang 441000, Hubei, China
  • show less
    References(42)

    [1] [1] RAMISETTY M, SASTRI S, KASHALIKAR U, et al. Transparent polycrystalline cubic spinels protect and defend[J]. Am Ceram Soc Bull, 2013, 92(2): 20-25.

    [4] [4] XIAO Z H, YU S J, LI Y M, et al. Materials development and potential applications of transparent ceramics: A review[J]. Mater Sci Eng R Rep, 2020, 139: 100518.

    [5] [5] REIMANIS I, KLEEBE H J. A review on the sintering and microstructure development of transparent spinel (MgAl2O4)[J]. J Am Ceram Soc, 2009, 92(7): 1472-1480.

    [6] [6] RUBAT DU MERAC M, KLEEBE H J, MLLER M M, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel[J]. J Am Ceram Soc, 2013, 96(11): 3341-3365.

    [7] [7] JOHNSON R, BISWAS P, RAMAVATH P, et al. Transparent polycrystalline ceramics: An overview[J]. Trans Indian Ceram Soc, 2012, 71(2): 73-85.

    [8] [8] HAN D, ZHANG J, PENG L, et al. Preparation of high-quality transparent Al-rich spinel ceramics by reactive sintering[J]. Ceram Int, 2018, 44(3): 3189-3194.

    [10] [10] ZONG X, WANG H, GU H, et al. A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire [J]. Scr Mater, 2020, 178: 428-432.

    [11] [11] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci Eng A, 2004, 375: 213-218.

    [13] [13] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299-303.

    [14] [14] MURTY B S, YEH J W, RANGANATHAN S, et al. High-entropy alloys (Second Edition) [M]. Netherland: Elsevier, 2019.

    [15] [15] GAO M C, MIRACLE D B, MAURICE D, et al. High-entropy functional materials[J]. J Mater Res, 2018, 33(19): 3138-3155.

    [16] [16] SUN L L, CAVA R J. High-entropy alloy superconductors: Status, opportunities, and challenges[J]. Phys Rev Mater, 2019, 3(9): 090301.

    [17] [17] PILANIA G, KOCEVSKI V, VALDEZ J A, et al. Prediction of structure and cation ordering in an ordered normal-inverse double spinel[J]. Commun Mater, 2020, 1: 84.

    [18] [18] GEORGE E, RAABE D, RITCHIE R. High-entropy alloys[J]. Nat Rev Mater, 2019, 4(8): 515-534.

    [19] [19] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.

    [20] [20] GILD J, ZHANG Y Y, HARRINGTON T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep, 2016, 6: 37946.

    [21] [21] ZHOU J Y, ZHANG J Y, ZHANG F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J]. Ceram Int, 2018, 44(17): 22014-22018.

    [22] [22] ZHANG R Z, GUCCI F, ZHU H Y, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides[J]. Inorg Chem, 2018, 57(20): 13027-13033.

    [23] [23] CHEN X Q, WU Y Q. High-entropy transparent fluoride laser ceramics[J]. J Am Ceram Soc, 2020, 103(2): 750-756.

    [24] [24] WEN T Q, LIU H H, YE B L, et al. High-entropy alumino-silicides: A novel class of high-entropy ceramics[J]. Sci China Mater, 2020, 63(2): 300-306.

    [25] [25] WOOD B, KIRKPATRICK R J, MONTEZ B. Order-disorder phenomena in MgAl2O4 spinel[J]. Am Mineral, 1986, 71(7): 999-1006.

    [26] [26] PARIDA T, KARATI A, GURUVIDYATHRI K, et al. Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure[J]. Scr Mater, 2020, 178: 513-517.

    [27] [27] SARKAR A, BREITUNG B, HAHN H. High entropy oxides: The role of entropy, enthalpy and synergy[J]. Scr Mater, 2020, 187: 43-48.

    [28] [28] DIPPO O F, VECCHIO K S. A universal configurational entropy metric for high-entropy materials[J]. Scr Mater, 2021, 201: 113974.

    [29] [29] FRACCHIA M, CODURI M, GHIGNA P, et al. Phase stability of high entropy oxides: A critical review[J]. J Eur Ceram Soc, 2024, 44(2): 585-594.

    [30] [30] HANSSON R, HAYES P C, JAK E. Experimental study of phase equilibria in the Al—Fe—Zn—O system in air[J]. Metall Mater Trans B, 2004, 35(4): 633-642.

    [31] [31] BROWN J J. Manganese-activated luminescence in the MgO-Al2O3-Ga2O3 system[J]. J Electrochem Soc, 1967, 114(3): 245.

    [32] [32] WU S P, XUE J J, FAN Y X. Spinel Mg(Al, Ga)2O4 solid solution as high-performance microwave dielectric ceramics[J]. J Am Ceram Soc, 2014, 97(11): 3555-3560.

    [33] [33] HBALOV S, PABST W. Modeling light scattering by spherical pores for calculating the transmittance of transparent ceramics-All you need to know[J]. J Eur Ceram Soc, 2021, 41(4): 2169-2192.

    [34] [34] PABST W, HBALOV S. Light scattering models for describing the transmittance of transparent and translucent alumina and zirconia ceramics[J]. J Eur Ceram Soc, 2021, 41(3): 2058-2075.

    [35] [35] GHOSH A, SARKAR R, MUKHERJEE B, et al. Effect of spinel content on the properties of magnesia-spinel composite refractory[J]. J Eur Ceram Soc, 2004, 24(7): 2079-2085.

    [36] [36] BENAMEUR N, BERNARD-GRANGER G, ADDAD A, et al. Sintering analysis of a fine-grained alumina-magnesia spinel powder[J]. J Am Ceram Soc, 2011, 94(5): 1388-1396.

    [37] [37] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171.

    [38] [38] HAN D, ZHANG J, LIU P, et al. Densification and microstructure evolution of reactively sintered transparent spinel ceramics[J]. Ceram Int, 2018, 44(10): 11101-11108.

    [39] [39] WANG B, WANG H, CHEN B W, et al. A novel durable spinel-type ZnGa2O4 transparent ceramic with wide transmission range[J]. Scr Mater, 2021, 205: 114186.

    [40] [40] XU P Y, WANG H, CUI W J, et al. ZnO·2.7Al2O3 nanocomposite with high optical transparency[J]. J Am Ceram Soc, 2022, 105(6): 3735-3739.

    [41] [41] JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides[J]. Scr Mater, 2018, 142: 116-120.

    [42] [42] KRELL A, HUTZLER T, KLIMKE J. Transmission physics and consequences for materials selection, manufacturing, and applications[J]. J Eur Ceram Soc, 2009, 29(2): 207-221.

    [43] [43] GOLDSTEIN A. Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review)[J]. J Eur Ceram Soc, 2012, 32(11): 2869-2886.

    [44] [44] GANESH I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications[J]. Int Mater Rev, 2013, 58(2): 63-112.

    [45] [45] MONIRI S, YANG Y, DING J, et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys[J]. Nature, 2023, 624(7992): 564-569.

    [46] [46] WANG X F, WANG X G, YANG Q Q, et al. High-strength medium-entropy (Ti, Zr, Hf)C ceramics up to 1800℃[J]. J Am Ceram Soc, 2021, 104(6): 2436-2441.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Chaojie, TU Ghuangsheng, JING Zhengyang, TU Bingtian, WANG Hao. Preparation and Optical Properties of High-Entropy Spinel-type (Li,Mg,Al,Zn,Ga)3O4 Transparent Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3806

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 8, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jan. 2, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240197

    Topics