Laser & Optoelectronics Progress, Volume. 61, Issue 7, 0706007(2024)

Research Progress and Future Directions in Deep Space Optical Communication (Invited)

Chao Liu1,2,3,4、*, Xueying Li1,2,3, Kaihe Zhang1,2,3, Bin Lan1,2,3, Tianjun Dai1,2,3, and Hao Xian1,2,3,4
Author Affiliations
  • 1National Laboratory on Adaptive Optics, Chengdu 610209, Sichuan, China
  • 2Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China
  • 3Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(46)

    [1] Lesh J R, Katz J, Tan H H et al. 2.5-bit/detected photon demonstration program: description, analysis, and phase I results[R](1981).

    [2] Hemmati H[M]. Deep space optical communications(2006).

    [3] Lambert S G. Design and analysis study of a spacecraft optical transceiver package[R](1985).

    [4] Nock K. TAU-A mission to a thousand astronomical units[C], 1049(1987).

    [5] Wilson K E, Lesh J R. An overview of the Galileo optical experiment (GOPEX)[J]. Telecommunications and Data Acquisition Progress Report, 114, 192-204(1993).

    [6] Hemmati H, Lesh J R. Laser communications terminal for the X2000 series of planetary missions[J]. Proceedings of SPIE, 3266, 171-177(1998).

    [7] Biswas A, Boroson D, Edwards B. Mars laser communication demonstration: what it would have been[J]. Proceedings of SPIE, 6105, 610502(2006).

    [8] Smith D E, Zuber M T, Sun X L et al. Two-way laser link over interplanetary distance[J]. Science, 311, 53(2006).

    [9] Boroson D M, Robinson B S, Murphy D V et al. Overview and results of the lunar laser communication demonstration[J]. Proceedings of SPIE, 8971, 89710S(2014).

    [13] Hoppe D, Biswas A, Srinivasan M et al. Deep space optical communications[J]. Proceedings of SPIE, 10524, 105240U(2018).

    [14] Robinson B S, Khatri F I, Padula M et al. Optical communication for human space exploration-status of space terminal development for the Artemis II crewed mission to the moon[C](2022).

    [15] Lock R E, Edwards C D, Nicholas A K et al. Small areostationary telecommunications orbiter concepts for Mars in the 2020s[C](2016).

    [16] Sodnik Z, Heese C, Arapoglou P D et al. European deep-space optical communication program[J]. Proceedings of SPIE, 10524, 105240Q.

    [17] Xu X F, Lu Z. Research status of mitigation techniques to assure the reliability of satellite-to-ground laser communications[J]. Journal of China Academy of Electronics and Information Technology, 13, 650-657(2018).

    [19] Tan L Y, Sun Z H. High speed laser information transmission technology of deep space between moon and earth[J]. Journal of Deep Space Exploration, 6, 515-522(2019).

    [20] Cui Y, Tang Y. The in-orbit core test of Shijian-20 satellite has been completed[J]. Space International, 38-41(2020).

    [22] Luo Z R, Zhang M, Jin G et al. Introduction of Chinese space-borne gravitational wave detection program“Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 7, 3-10(2020).

    [23] Zhao M Y, Gao R H, Zhang Q T et al. Research on simulated laser link construction control system of Taiji program[J]. Chinese Journal of Lasers, 50, 1906003(2023).

    [24] Zhang Y B, Deng R J, Liu H S et al. Parameter design and experimental verification of Taiji program inter-satellite laser communication[J]. Chinese Journal of Lasers, 50, 2306002(2023).

    [25] Deng R J, Zhang Y B, Liu S H et al. Ground electronics verification of inter-satellites laser ranging in the Taiji program[J]. Chinese Optics, 16, 765-776(2023).

    [26] Scozzafava J J, Boroson D M, Bondurant R S et al. The Mars lasercom terminal[C], 9-10(2005).

    [27] Chen C C, Hemmati H, Biswas A et al. Simplified lasercom system architecture using a disturbance-free platform[J]. Proceedings of SPIE, 6105, 610505(2006).

    [28] Boroson D M, Scozzafava J J, Murphy D V et al. The lunar laser communications demonstration (LLCD)[C], 23-28(2009).

    [29] Jacka N, Walter R, Laughlin D et al. Design of stabilized platforms for deep space optical communications (DSOC)[J]. Proceedings of SPIE, 10096, 100960P(2017).

    [30] Lesh J R, Deutsch L J, Weber W J. Plan for the development and demonstration of optical communications for deep space[J]. Proceedings of SPIE, 1522, 27-35(1991).

    [31] Britcliffe M, Hoppe D, Roberts W et al. A ten-meter ground-station telescope for deep-space optical communications: a preliminary design[R](2001).

    [32] Wilson K E, Britcliffe M, Golshan N. Progress in design and construction of the Optical Communications Telescope Laboratory (OCTL)[J]. Proceedings of SPIE, 3932, 112-116(2000).

    [33] Boroson D M, Bondurant R S, Murphy D V. LDORA: a novel laser communications receiver array architecture[J]. Proceedings of SPIE, 5338, 56-64(2004).

    [34] Grein M E, Kerman A J, Dauler E A et al. An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires[J]. Proceedings of SPIE, 9492, 949208(2015).

    [35] Charles J R, Hoppe D J, Sehic A. Hybrid RF/optical communication terminal with spherical primary optics for optical reception[C], 171-179(2011).

    [36] Gol’tsman G N, Okunev O, Chulkova G et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 79, 705-707(2001).

    [37] Biswas A, Kovalik J M, Wright M W et al. LLCD operations using the Optical Communications Telescope Laboratory (OCTL)[J]. Proceedings of SPIE, 8971, 89710X(2014).

    [38] Grein M E, Kerman A J, Dauler E A et al. Design of a ground-based optical receiver for the lunar laser communications demonstration[C], 78-82(2011).

    [39] Srinivasan M, Alerstam E, Wollman E et al. The deep space optical communications project ground laser receiver[J]. Proceedings of SPIE, 12413, 124130R(2023).

    [40] Xiang J S, Deng C H, Jiang H et al. The performance analysis for PPM system based on photon-counting detector arrays[J]. Study on Optical Communications, 27(2017).

    [41] Hemmati H, Biswas A, Djordjevic I B. Deep-space optical communications: future perspectives and applications[J]. Proceedings of the IEEE, 99, 2020-2039(2011).

    [42] Ma J, Xu K H, Tan L Y et al. Analysis for Mars laser communications system in USA[J]. Chinese Journal of Space Science, 26, 364-369(2006).

    [43] Constantine S, Elgin L E, Stevens M L et al. Design of a high-speed space modem for the lunar laser communications demonstration[J]. Proceedings of SPIE, 7923, 792308(2011).

    [44] Gupta S, Engin D, Pachowicz D et al. Development, testing, and initial space qualification of 1.5-μm high-power (6 W) pulse-position-modulated (PPM) fiber laser transmitter for deep-space laser communication[J]. Proceedings of SPIE, 9739, 97390V(2016).

    [45] Li H. Research on coding performance of SCPPM in deep space optical communication[D](2012).

    [46] Zhao Y. Research on pulse position modulation and demodulation in deep space laser communication system[D](2020).

    [47] Srinivasan M, Rogalin R, Lay N et al. Downlink receiver algorithms for deep space optical communications[J]. Proceedings of SPIE, 10096, 100960A(2017).

    Tools

    Get Citation

    Copy Citation Text

    Chao Liu, Xueying Li, Kaihe Zhang, Bin Lan, Tianjun Dai, Hao Xian. Research Progress and Future Directions in Deep Space Optical Communication (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jan. 4, 2024

    Accepted: Feb. 5, 2024

    Published Online: Apr. 19, 2024

    The Author Email: Liu Chao (liuchao@ioe.ac.cn)

    DOI:10.3788/LOP240902

    Topics