Chinese Journal of Quantum Electronics, Volume. 38, Issue 3, 365(2021)
Noise analysis and performance optimization of experiments in classical-quantum signals co-channel transmission
[1] [1] Bennett C H, Brassard G. Quantum cryptography: Publickey distribution and coin tossing[C]. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York), : 175-179.
[2] [2] Ekert A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.
[3] [3] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74: 145-195.
[4] [4] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81: 1301-1350.
[5] [5] Shaneman K, Gray S. Optical network security: Technical analysis of fiber tapping mechanisms and methods for detection & prevention[C]. Military Communications Conference. IEEE, 2004.
[6] [6] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional datatransmission over installed fiber using wavelength-division multiplexing[J]. Electronics Letters, 1997, 33(3): 188-190.
[7] [7] Peters N A, Toliver P, Chapuran T E. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments[J]. New Journal of Physics, 2009, 11(4): 045012.
[8] [8] Eraerds P, Walenta N, Legré M. Quantum key distribution and 1 Gbps data encryption over a single fibre[J]. New Journal of Physics, 2010, 12(6): 063027.
[9] [9] Choi I P, Young R J, Townsend P D. Quantum key distribution on a 10 Gb/s WDM-PON[J]. Optics Express, 2010, 18(9): 9600-9612.
[10] [10] Patel K A, Dynes J F, Choi I, et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber[J]. Physical Review X, 2012, 2(4): 041010.
[11] [11] Yoshino K I, Fujiwara M, Tanaka A, et al. High-speed wavelength-division multiplexing quantum key distribution system[J]. Optics Letters, 2012, 37(2): 223-225.
[12] [12] Patel K A, Dynes J F, Lucamarini M, et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 2014, 104(5): 175-179.
[13] [13] Wang L J, Zou K H, Sun W, et al. Long distance co-propagation of quantum key distribution and terabit classical optical data channels[J]. Physical Review A, 2017, 95(1): 012301.
[14] [14] Mao Y Q, Wang B X, Zhao C X, et al. Integrating quantum key distribution with classical communications in backbone fiber network[J]. Optics Express, 2018, 26(5): 006010.
[15] [15] Wang B X, Mao Y Q, Shen L, et al. Long-distance transmission of quantum key distribution coexisting with classical optical communication over weakly-coupled few-mode fiber[J]. Optics Express, 2020, 28(9): 12558-12565.
[16] [16] Wang Y S, Li Y X, Shi L, et al. Scheme of multiplexed classical and quantum transmission system with heralded single-photon source[J]. Chinese Journal of Quantum Electronics, 2015, 32(4): 445-451.
[19] [19] Yoshino K I, Fujiwara M, Tanaka A, et al. High-speed wavelength-division multiplexing quantum key distribution system[J]. Optics Letters, 2012, 37(2): 223-225.
[20] [20] Thiago F D S, Xavier G B, Temporao G P, et al. Impact of Raman scattered noise from multiple telecomchannels on fiber-optic quantum key distribution systems[J]. Journal of Lightwave Technology, 2014, 32(13): 2332-2339.
[21] [21] Agrawal G P. Fiber-Optic Communication Systems[M]. Trans. by Jia D F, Xin X J. Beijing: Publishing House of Electronics Industry, 2016: 60-61.
[22] [22] Zhang Y, Ge C F, Feng D J, et al. The research on channel crosstalk of DWDM system[J]. Journal of Optoelectronics Laser, 1999, 10(6): 525-527.
[23] [23] Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 2005, 72(1): 012326.
[24] [24] Mlejnek M, Kaliteevskiy N A, Nolan D A. Reducing spontaneous Raman scattering noise in high quantum bit rate QKD systems over optical fiber[J]. 2017, arXiv: 1712.05891.
Get Citation
Copy Citation Text
LI Jiahao, SHI Lei, ZHANG Qifa, XUE Yang, LI Tianxiu. Noise analysis and performance optimization of experiments in classical-quantum signals co-channel transmission[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 365
Category:
Received: Sep. 9, 2020
Accepted: --
Published Online: Sep. 3, 2021
The Author Email: Jiahao LI (825241916@qq.com)