Optics and Precision Engineering, Volume. 31, Issue 20, 3065(2023)

Defect detection of low-resolution ceramic substrate image based on knowledge distillation

Feng GUO1... Xiaodong SUN1, Qibing ZHU1,*, Min HUANG1 and Xiaoxiang XU2 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 2422, China
  • 2Wuxi CK Electric Control Equipment Co., Ltd, Wuxi 14400, China
  • show less
    References(22)

    [1] [1] 郭峰, 朱启兵, 黄敏, 等. 基于改进YOLOV4的陶瓷基板瑕疵检测[J]. 光学 精密工程, 2022, 30(13): 1631-1641. doi: 10.37188/OPE.20223013.1631GUOF, ZHUQ B, HUANGM, et al. Defect detection in ceramic substrate based on improved YOLOV4[J]. Opt. Precision Eng., 2022, 30(13): 1631-1641.(in Chinese). doi: 10.37188/OPE.20223013.1631

    [2] J C LI, F M FANG, K F MEI et al. Multi-Scale Residual Network for Image Super-Resolution, 527-542(2018).

    [3] L QI, J KUEN, J X GU et al. Multi-scale aligned distillation for low-resolution detection, 14438-14448(20).

    [5] T HE, C H SHEN, Z TIAN et al. Knowledge adaptation for efficient semantic segmentation, 578-587(15).

    [6] Y F LIU, C Y SHU, J D WANG et al. Structured knowledge distillation for dense prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 7035-7049(2023).

    [7] G B CHEN, W CHOI, X YU et al. Learning efficient object detection models with knowledge distillation, 742-751(2017).

    [8] T WANG, L YUAN, X P ZHANG et al. Distilling object detectors with fine-grained feature imitation, 4928-4937(15).

    [9] L ZHANG, K MA. Improve object detection with feature-based knowledge distillation: towards accurate and efficient detectors(2020).

    [10] [10] 褚晶辉, 史李栋, 井佩光, 等. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.CHUJ H, SHIL D, JINGP G, et al. Context-aware knowledge distillation network for object detection[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 503-509.(in Chinese)

    [11] Q B HOU, D Q ZHOU, J S FENG. Coordinate attention for efficient mobile network design, 13708-13717(20).

    [12] S LIU, L QI, H F QIN et al. Path aggregation network for instance segmentation, 8759-8768(18).

    [13] [13] 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3)624-653. doi: 10.11897/SP.J.1016.2022.00624HUANGZ H, YANGS Z, LINW, et al. Knowledge distillation: a survey[J]. Chinese Journal of Computers, 2022, 45(3)624-653. (in Chinese). doi: 10.11897/SP.J.1016.2022.00624

    [14] K FU, P P SHI, Y F SONG et al. Ultrafast video attention prediction with coupled knowledge distillation. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 10802-10809(2020).

    [15] B Y LI, Y LIU, X G WANG. Gradient harmonized single-stage detector. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 8577-8584(2019).

    [17] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [18] Z W CAI, N VASCONCELOS. Cascade R-CNN: delving into high quality object detection, 6154-6162(18).

    Tools

    Get Citation

    Copy Citation Text

    Feng GUO, Xiaodong SUN, Qibing ZHU, Min HUANG, Xiaoxiang XU. Defect detection of low-resolution ceramic substrate image based on knowledge distillation[J]. Optics and Precision Engineering, 2023, 31(20): 3065

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Apr. 10, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: ZHU Qibing (zhuqib@163.com)

    DOI:10.37188/OPE.20233120.3065

    Topics