Optics and Precision Engineering, Volume. 28, Issue 9, 1893(2020)

Interface engineering of polymer solar cells

WANG Mei1... LIU Jiu-ming2, LIU Chun-yu1 and GUO Wen-bin1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(51)

    [1] [1] LI K, WU Y, TANG Y, et al.. Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-LUMO-level acceptor to improve film morphology [J]. Adv. Energy Mater, 2019, 9(33): 1901728.

    [2] [2] XU X, FENG K, BI Z, et al.. Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(Ⅱ) complexation strategy [J]. Adv. Mater, 2019, 31(29): 1901872.

    [3] [3] FAN B B, ZHANG D F, LI M J, et al.. Achieving over 16% efficiency for single-junction organic solar cells [J]. Sci. China: Chem, 2019, 62(6): 746-752.

    [4] [4] MENG L X, ZHANG Y M, WAN X J, et al.. Organic and solution-processed tandem solar cells with 17.3% efficiency [J]. Science, 2018, 361: 1094-1098.

    [5] [5] CHENG Y J, YANG S H, HSU C S. Synthesis of conjugated polymers for organic solar cell applications [J]. Chem. Rev, 2009, 109(11): 5868-5923.

    [6] [6] GAO F, INGAN S O. Charge generation in polymer-fullerene bulk-heterojunction solar cells [J]. Chem. Chem. Phys, 2014, 16(38): 20191-20304.

    [7] [7] COWAN S R, BANERJI N, LEONG W L, et al.. Charge formation, recombination, and sweep-out dynamics in organic solar cells [J]. Adv. Funct. Mater, 2012, 22(6): 1116-1128.

    [8] [8] REESE M D, MORFA A J, WHITE M S, et al.. Pathways for the degradation of organic photovoltaic P3HT∶PCBM based devices [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(7): 746-752.

    [9] [9] ZHANG M, ZHANG F J, AN Q S, et al.. Highly efficient ternary polymer solar cells by optimizing photon harvesting and charge carrier transport [J]. Nano Energy, 2016, 22: 241-254.

    [10] [10] ZHENG Z, WANG R, YAO H F, et al.. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current [J]. Nano Energy, 2018, 50: 169-175.

    [11] [11] LIU F, GU Y, SHEN X B, et al.. Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics [J]. Progress in Polymer Science, 2013, 38(12): 1990-2052.

    [12] [12] YU G, GAO J, HUMMELEN J C A, et al.. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995, 270(5243): 1789-1791.

    [13] [13] HALLS J J M, WALSH C A, GREENHAM N C, et al.. Efficient photodiodes from interpenetrating polymer networks [J]. Nature, 1995, 376(6540): 498-500.

    [14] [14] YAN L P, WANG Y L, WEI J F, et al.. Simultaneous performance and stability improvement of polymer: fullerene solar cells by doping with piperazine [J]. J. Mater. Chem. A, 2019, 7(12): 7099-7108.

    [15] [15] CHEN L, WU M L, SHAO G W, et al.. A helical perylene diimide-based acceptor for non-fullerene organic solar cells: synthesis, morphology and exciton dynamics [J]. R. SOC. Open Sci, 2018, 5(5): 172041.

    [16] [16] HUANG F, WU H B, CAO Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices [J]. Chem. Soc. Rev, 2010, 39(7): 2500-2521.

    [17] [17] HE Z C, ZHONG C M, SU S J, et al.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure [J]. Nature Photonics, 2012, 6(9): 591-595.

    [18] [18] ZHENG Z, HU Q, ZHANG S Q, et al.. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine tuned hole transporting layer [J]. Adv. Mater, 2018, 30(34): 1801801.

    [19] [19] LIANG Y Y, XU Z, XIA J B, et al.. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4% [J]. Adv. Mater, 2010, 22(20): E135-E138.

    [20] [20] ZHOU H Q, ZHANG Y, MAI C K, et al.. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells [J]. Adv. Mater, 2014, 26(5): 780-785.

    [21] [21] YAO H F, YE L, ZHANG H, et al.. Molecular design of benzodithiophene-based organic photovoltaic materials [J]. Chem. Rev, 2016, 116(12): 7397-7457.

    [22] [22] MA W L, YANG C, GONG X, et al.. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater, 2005, 15(10): 1617-1622.

    [23] [23] PEET J, KIM J Y, COATES N E, et al.. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J]. Nature Mater, 2007, 6(7): 497-500.

    [24] [24] KURPIERS J, FERRON T, ROLAND S, et al.. Probing the pathways of free charge generation in organic bulk heterojunction solar cells [J]. Nat Commun, 2018, 9(1): 2038.

    [25] [25] XIE S K, XIA Y X, ZHENG Z, et al.. Effects of nonradiative losses at charge transfer states and energetic disorder on the open-circuit voltage in nonfullerene organic solar cells [J]. Adv. Funct. Mater, 2018, 28(5): 1705659.

    [26] [26] WURFEL U, NEHER D, SPIES A, et al.. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells [J]. Nature Communications, 2015, 6(1): 6951.

    [27] [27] LEE E J, CHOI M H, HAN Y W, et al.. Effect on electrode work function by changing molecular geometry of conjugated polymer electrolytes and application for hole-transporting layer of organic optoelectronic devices [J]. ACS Appl. Mater. Interfaces, 2017, 9(50): 44060-44069.

    [28] [28] XU B W, ZHENG Z, ZHAO K, et al.. A bifunctional interlayer material for modifying both the anode and cathode in highly efficient polymer solar cells [J]. Adv. Mater, 2016, 28(3): 434-439.

    [29] [29] RIDER D A, HARRIS K D, WANG D, et al.. Thienylsilane-modified indium tin oxide as an anodic interface in polymer/fullerene solar cells [J]. ACS Appl. Mater. Interfaces, 2009, 1(2): 279-288.

    [30] [30] XU C, CAI P, ZHANG X W, et al.. A wide temperature tolerance, solution-processed MoOx interface layer for efficient and stable organic solar cells. sol [J]. Energy Mater. Sol. Cells, 2017, 159: 136-142.

    [31] [31] HU L, WU F Y, LI C Q, et al.. Alcohol-Soluble N-Type conjugated polyelectrolyte as electron transport layer for polymer solar cells [J]. Macromolecules, 2015, 48(16): 5578-5586.

    [32] [32] YAN L, SONG Y X, ZHOU Y, et al.. Effect of pei cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells [J]. Org. Electron, 2015, 17: 94-101.

    [33] [33] YE H, HU X W, JIANG Z X, et al.. Pyridinium salt-based molecules as cathode interlayers for enhanced performance in polymer solar cells [J]. J. Mater. Chem. A, 2013, 1(10): 3387-3394.

    [34] [34] WANG X T, QI B Y, LI H, et al.. Improvement of organic solar cells with ammonium salt, tetrabutylammonium tetraphenylborate, as cathode buffer layer [J]. Synth. Met, 2014, 191: 36-40.

    [35] [35] YANG T B, WANG M, DUAN C H, et al.. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte [J]. Energy Environ. Sci, 2012, 5(8): 8208-8214.

    [36] [36] CHEN L, XIE C, CHEN Y W. Optimization of the power conversion efficiency of room temperature-fabricated polymer solar cells utilizing solution processed tungsten oxide and conjugated polyelectrolyte as electrode interlayer [J]. Adv. Funct. Mater, 2014, 24: 3986-3995.

    [37] [37] SUN X X, LI C, NI J, et al.. A facile two-step interface engineering strategy to boost the efficiency of inverted ternary-blend polymer solar cells over 10% [J]. ACS Sustainable Chem. Eng, 2017, 5(10): 8997-9005.

    [38] [38] WU Z, SUN C, DONG S, et al.. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells [J]. J. Am. Chem. Soc, 2016, 138: 2004-2013.

    [39] [39] JIA T, ZHENG N N, CAI W Q, et al.. Naphthalene diimide-based polymers consisting of amino alkyl side groups: three-component one-pot polymerization and their application in polymer solar cells [J]. Acta Chim. Sin, 2017, 75(8): 808-818.

    [40] [40] LI Z L, YANG D L, ZHAO X L, et al.. New PDI-based small-molecule cathode interlayer material with strong electron extracting ability for polymer solar cells [J]. RSC Adv, 2016, 6(103): 101645-101651.

    [41] [41] ZHOU Y H, CHEUN H, POTSCAVAGE W J, et al.. Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposited by atomic layer deposition [J]. J. Mater. Chem, 2010, 20(29): 6189-6194.

    [42] [42] SNCHE J G, BALDERRAMA V S, ESTRADA M, et al.. Stability study of high efficiency polymer solar cells using TiOx as electron transport layer [J]. Solar Energy, 2017, 150: 147-155.

    [43] [43] GUO J X, REN G H, HAN W B, et al.. Facilitating electron extraction of inverted polymer solar cells by using organic/inorganic/organic composite buffer layer [J]. Organic Electronics, 2019, 68: 187-192.

    [44] [44] YIN Z G, ZHENG Q D, CHEN S C, et al.. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 V [J]. ACS Appl. Mater. Interfaces, 2013, 5(18): 9015-9025.

    [45] [45] XU R G, ZHANG K, LIU X, et al.. Alkali salt-doped highly transparent and thickness-insensitive electron-transport layer for high-performance polymer solarcell [J]. ACS Appl. Mater. Interfaces, 2018, 10(2): 1939-1947.

    [46] [46] WANG R, ZHANG D Y, XIE S K, et al.. High efficiency non-fullerene organic solar cells without electron transporting layers enabled by Lewis base anion doping [J]. Nano Energy, 2018, 51: 736-744.

    [47] [47] SINGH A, DEY A, LYER P K. Impact of specifically shaped plasmonic gold nanoparticles and a double cathode interfacial layer on the performance of conducting polymer-based photovoltaics [J]. ACS Appl. Nano Mater, 2018, 1(10): 5646-5654.

    [48] [48] KANG H, KEE S, YU K, et al.. Simplified tandem polymer solar cells with an ideal self-organized recombination layer [J]. Adv. Mater, 2015, 27(8): 1408-1413.

    [49] [49] KUMAR S, PANIGRAHI D, DHAR A. Role of organic interfacial modifiers in inverted polymers solar cells: an in-depth analysis of perylene vs fullerene organic modifiers [J]. Appl. Surf. Sci, 2018, 435: 855-862.

    [50] [50] JOSHI A G, SAHAI S, GANDHI N, et al.. Valence band and core-level analysis of highly luminescent ZnO nanocrystals for designing ultrafast optical sensors [J]. Appl. Phys. Lett, 2010, 96(12): 123102.

    [51] [51] VOHRA V, KAWASHIMA K, KAKARA T, et al.. Efficient inverted polymer solar cells employing favourable molecular orientation [J]. Nature Photonics, 2015, 9(6): 403-408.

    Tools

    Get Citation

    Copy Citation Text

    WANG Mei, LIU Jiu-ming, LIU Chun-yu, GUO Wen-bin. Interface engineering of polymer solar cells[J]. Optics and Precision Engineering, 2020, 28(9): 1893

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 11, 2020

    Accepted: --

    Published Online: Dec. 28, 2020

    The Author Email:

    DOI:10.37188/ope.20202809.1893

    Topics