Optoelectronics Letters, Volume. 18, Issue 11, 687(2022)
Entanglement of three-level atomic system and spontaneous emission fields in a vacuum and near the 1D photonic crystal band gap
[1] [1] SHIRI J, SHAHI F, MEHMANNAVAZ M R, et al. Phase control of transient optical properties of double coupled quantum-dot nanostructure via Gaussian laser beams[J]. Chinese physics letters, 2018, 35(02): 024204.
[2] [2] AL-AMERI H H, ABDULLAH M, AL-KHURSAN A H. Entanglement in ladder-plus-Y double quantum dot structure via entropy[J]. Applied optics, 2019, 58:369.
[3] [3] HU X M, HUANG C X, SHENG Y B, et al. Long-distance entanglement purification for quantum communication[J]. Physical review letters, 2021, 126: 010503.
[4] [4] STUTE A, CASABONE B, SCHINDLER P, et al. Tunable ion-photon entanglement in an optical cavity[J]. Nature, 2012, 485:482-485.
[5] [5] KUANG L M, ZHOU L. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency[J]. Physical review A, 2003, 68:043606.
[6] [6] ENTEZAR S R. Entanglement of a two-level atom and its spontaneous emission near the edge of a photonic band gap[J]. Physical review A, 2009, 373(38): 3413-3418.
[7] [7] SAHRAI M, BOROOJERDI V T A. Dynamical behavior of atom-photon entanglement for a four-level atom near the band edge of a 3D-anisotropic photonic crystal[J]. Quantum information processing, 2017, 16:145.
[8] [8] SANGSHEKAN B, SAGHAVAZ N E, GHARAMALEKI A H, et al. Maximal atom-photon entanglement by the incoherent pumping fields[J]. European physical journal plus, 2019, 134:274.
[9] [9] GARRAWAY B M, KNIGHT P L. Cavity modified quantum beats[J]. Physical review A, 1996, 54: 3592-3602.
[10] [10] ZHANG H Z, TANG S H, DONG P, et al. Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal[J]. Physical review A, 2002, 65:063802.
[11] [11] ABDALLA M S, ABDEL-ATY M, OBADA A S F. Entropy and entanglement of time dependent two-mode Jaynes-Cummings model[J]. Physica A: statistical mechanics and its applications, 2003, 326(1-2): 203-219.
[12] [12] SHIRI J, KHALILZADEH J, ASADPOUR S. Optical properties of 87 Rb atomic vapor near the 1D photonic crystal bandgap and all-optical switching of transmitted light[J]. Physica scripta, 2022, 97:035503.
[13] [13] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical review letters, 1987, 58:2059-2062.
[14] [14] ENTEZAR S R, TAJALLI H. Probe absorption-dispersion spectra of a driven three-level atom in a double-band photonic crystal[J]. Journal of physics B-atomic molecular and optical physics, 2006, 39: 2959-2967.
[15] [15] ADACHI S. GaAs, AlAs, and AlxGa1?xAs:material parameters for use in research and device applications[J]. Journal of applied physics, 1985, 58:R1-R29.
[16] [16] RUPASOV V I, SINGH M. Two-atom problem and polariton-impurity band in dispersive media and photonic-band-gap materials[J]. Physical review A, 1997, 56:898-904.
[17] [17] ARAKI H, LIEB E H. Entropy inequalities[M]. Berlin, Heidelberg:Springer, 2002:47-57.
[18] [18] PHOENIX S J D, KNIGHT P L. Establishment of an entangled atom-field state in the Jaynes-Cummings model[J]. Physical review A, 1991, 44:6023-6029.
[19] [19] KITTEL C. Introduction to solid state physics[M]. 8th edition. New York:John Wiley & Sons, 2005.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Entanglement of three-level atomic system and spontaneous emission fields in a vacuum and near the 1D photonic crystal band gap[J]. Optoelectronics Letters, 2022, 18(11): 687
Received: Jun. 1, 2022
Accepted: Jul. 24, 2022
Published Online: Jan. 20, 2023
The Author Email: (jalil.shiri@chmail.ir)